Skip to main content

Viral Vectors for Gene Transfer: Current Status of Gene Therapeutics

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 197))

Abstract

Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

AAVS1:

Adeno-associated virus integration site 1

Ad:

Adenovirus

ADA:

Adenosine deaminase

cDNA:

Complementary DNA

CMV:

Cytomegalovirus

CNS:

Central nervous system

cPPT:

Central polypurine tract

CsCl:

Caesium chloride

DOC:

Deoxycholate

EIAV:

Equine infectious anemia virus

ELISA:

Enzyme-linked immunosorbent assay

FGFR:

Fibroblast growth factor receptor

GFP:

Green fluorescent protein

GMP:

Good manufacturing practice

HIV:

Human immunodeficiency virus

HSV:

Herpes simplex virus

ITR:

Inverted terminal repeat

lacZ:

β-Galactosidase

LCA:

Leber congenital amaurosis

LMO2:

LIM domain only 2 (rhombotin-like 1)

MoMLV:

Moloney murine leukemia virus

PCR:

Polymerase chain reaction

PIC:

Pre-integration complex

RCV:

Replication-competent virus

RRE:

Rev responsive element

scAAV:

Self-complementary AAV

SCID:

Severe combined immunodeficiency

SDS-PAGE:

SDS polyacrylamide gel electrophoresis

SF9:

Spodoptera frugiperda cell line

SIN:

Self-inactivating

U3 region:

Unique 3′ region

VA-RNA:

Viral associated RNA

VP:

Viral protein

VSV:

Vesicular stomatitis virus

References

  • Andreadis S, Palsson BO (1997) Coupled effects of polybrene and calf serum on the efficiency of retroviral transduction and the stability of retroviral vectors. Hum Gene Ther 8:285–291

    Article  CAS  PubMed  Google Scholar 

  • Andreadis ST, Brott D, Fuller AO, Palsson BO (1997) Moloney murine leukemia virus-derived retroviral vectors decay intracellularly with a half-life in the range of 5.5 to 7.5 h. J Virol 71:7541–7548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, Scaramuzza S, Andolfi G, Mirolo M, Brigida I, Tabucchi A, Carlucci F, Eibl M, Aker M, Slavin S, Al-Mousa H, Al Ghonaium A, Ferster A, Duppenthaler A, Notarangelo L, Wintergerst U, Buckley RH, Bregni M, Marktel S, Valsecchi MG, Rossi P, Ciceri F, Miniero R, Bordignon C, and Roncarolo MG (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458

    Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Bohne J, Cathomen T (2008) Genotoxicity in gene therapy: an account of vector integration and designer nucleases. Curr Opin Mol Ther 10:214–223

    CAS  PubMed  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  CAS  PubMed  Google Scholar 

  • Choi VW, Asokan A, Haberman RA, Samulski RJ (2007) Production of recombinant adeno-associated viral vectors for in vitro and in vivo use. Curr Protoc Mol Biol Chapter 16: Unit 16 25

    Google Scholar 

  • Conway J, Rhys C, Zolotukhin I, Zolotukhin S, Muzyczka N, Hayward G, Byrne B (1999) High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 rep and cap. Gene Ther 6:986–993

    Article  CAS  PubMed  Google Scholar 

  • FDA (2001) Supplemental guidance on testing for replication-competent retrovirus in retroviral vector-based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. Hum Gene Ther 12:315–320

    Article  Google Scholar 

  • Fischer A, Cavazzana-Calvo M (2005) Integration of retroviruses: a fine balance between efficiency and danger. PLoS Med 2:e10

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, Von Kalle C, Barington T, Jakobsen MA, Christensen HO, Al Ghonaium A, White HN, Smith JL, Levinsky RJ, Ali RR, Kinnon C, Thrasher AJ (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Goff S (2001) Retroviridae: the retroviruses and theit replication. In: Knipe DM, Howley PM (eds) Fields Virology, vol 2. Lippincott, Philadelphia, pp 1871–1940

    Google Scholar 

  • Grimm D, Kay MA (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 3:281–304

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Kay MA, Kleinschmidt JA (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 7:839–850

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Kern A, Rittner K, Kleinschmidt JA (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9:2745–2760

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  PubMed  Google Scholar 

  • Hauswirth W, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon T, Boye SL, Flotte TR, Byrne B, Jacobson SG (2008) Phase I trial of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results. Hum Gene Ther 19:979–90

    Article  CAS  PubMed  Google Scholar 

  • Heilbronn R, Engstler M, Weger S, Krahn A, Schetter C, Boshart M (2003) ssDNA-dependent colocalization of adeno-associated virus Rep and herpes simplex virus ICP8 in nuclear replication domains. Nucleic Acids Res 31:6206–6213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang W, Wang L, Harrell H, Liu J, Thomas DL, Mayfield TL, Scotti MM, Ye GJ, Veres G, Knop DR (2009) An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes. Gene Ther 16:229–39

    Article  CAS  PubMed  Google Scholar 

  • Kohn DB, Candotti F (2009) Gene therapy fulfilling its promise. N Engl J Med 360:518–521

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS, Duan D (2005) Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23:1435–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Asokan A, Wu Z, Van Dyke T, DiPrimio N, Johnson JS, Govindaswamy L, Agbandje-McKenna M, Leichtle S, Redmond DE Jr, McCown TJ, Petermann KB, Sharpless NE, Samulski RJ (2008) Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther 16:1252–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizee G, Aerts JL, Gonzales MI, Chinnasamy N, Morgan RA, Topalian SL (2003) Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 14:497–507

    Article  CAS  PubMed  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merten OW (2004) State-of-the-art of the production of retroviral vectors. J Gene Med 6(Suppl 1):S105–124

    Article  CAS  PubMed  Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DG, Trobridge GD, Petek LM, Jacobs MA, Kaul R, Russell DW (2005) Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 79:11434–11442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  PubMed Central  Google Scholar 

  • Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A, Baum C (2006) Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108:2545–2553

    Article  CAS  PubMed  Google Scholar 

  • Muller OJ, Kaul F, Weitzman MD, Pasqualini R, Arap W, Kleinschmidt JA, Trepel M (2003) Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 21:1040–1046

    Article  PubMed  Google Scholar 

  • Muzyczka N, Berns KI (2001) Parvoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Lippincott, Philadelphia, pp 2327–2359

    Google Scholar 

  • Perabo L, Buning H, Kofler DM, Ried MU, Girod A, Wendtner CM, Enssle J, Hallek M (2003) In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther 8:151–157

    Article  CAS  PubMed  Google Scholar 

  • Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ, Zhong L, Zolotukhin S, Srivastava A, Lewin AS, Hauswirth WW (2009) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17:463–471

    Article  CAS  PubMed  Google Scholar 

  • Philpott NJ, Thrasher AJ (2007) Use of nonintegrating lentiviral vectors for gene therapy. Hum Gene Ther 18:483–489

    Article  CAS  PubMed  Google Scholar 

  • Powell SK, Kaloss MA, Pinkstaff A, McKee R, Burimski I, Pensiero M, Otto E, Stemmer WP, Soong NW (2000) Breeding of retroviruses by DNA shuffling for improved stability and processing yields. Nat Biotechnol 18:1279–1282

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues T, Carrondo MJ, Alves PM, Cruz PE (2007) Purification of retroviral vectors for clinical application: biological implications and technological challenges. J Biotechnol 127:520–541

    Article  CAS  PubMed  Google Scholar 

  • Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Segura MM, Kamen A, Trudel P, Garnier A (2005) A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnol Bioeng 90:391–404

    Article  PubMed  Google Scholar 

  • Segura MM, Kamen A, Garnier A (2006) Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv 24:321–337

    Google Scholar 

  • Snyder RO, Flotte TR (2002) Production of clinical-grade recombinant adeno-associated virus vectors. Curr Opin Biotechnol 13:418–423

    Article  CAS  PubMed  Google Scholar 

  • Themis M, Waddington SN, Schmidt M, von Kalle C, Wang Y, Al-Allaf F, Gregory LG, Nivsarkar M, Themis M, Holder MV, Buckley SM, Dighe N, Ruthe AT, Mistry A, Bigger B, Rahim A, Nguyen TH, Trono D, Thrasher AJ, Coutelle C (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 12:763–771

    Article  CAS  PubMed  Google Scholar 

  • Toublanc E, Benraiss A, Bonnin D, Blouin V, Brument N, Cartier N, Epstein AL, Moullier P, Salvetti A (2004) Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2 (rAAV2) particle assembly using stable producer cell lines. J Gene Med 6:555–564

    Article  CAS  PubMed  Google Scholar 

  • Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Gansbacher B, Berns KI, Bosch F, Kay MA, Naldini L, Wei YQ (2008) Good news on the clinical gene transfer front. Hum Gene Ther 19:429–430

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, Herzog RW, Zolotukhin I, Warrington KH Jr, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 105:7827–7832

    Article  CAS  PubMed  Google Scholar 

  • Zolotukhin S (2005) Production of recombinant adeno-associated virus vectors. Hum Gene Ther 16:551–557

    Article  CAS  PubMed  Google Scholar 

  • Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ, Muzyczka N (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6:973–985

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Heilbronn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heilbronn, R., Weger, S. (2010). Viral Vectors for Gene Transfer: Current Status of Gene Therapeutics. In: Schäfer-Korting, M. (eds) Drug Delivery. Handbook of Experimental Pharmacology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00477-3_5

Download citation

Publish with us

Policies and ethics