Skip to main content

Molecular Therapies for Malignant Gliomas

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

Due to the dismal prognosis of malignant glioma patients there is an urgent need for new innovative treatments based on a better understanding of the molecular mechanisms of gliomagenesis. Several growth factor mediated molecular pathways are critically involved in glioma growth, invasiveness, and tumor neovascularization. Therefore, several concepts of molecular therapies directed against specific receptor-mediated signaling pathways are currently studied in preclinical and clinical settings. These concepts include monoclonal antibodies, small molecular inhibitors, and antisense oligodeoxynucleotides.

This book chapter highlights the recent developments in molecular therapies for malignant gliomas targeting crucial oncogenetic signaling pathways at the RNA- and protein levels. Finally, this review describes the potential role of such new molecular approaches in combination with established multimodality treatment concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAC:

Anaplastic astrocytoma

AG:

Anaplastic glioma

AOD:

Anaplastic oligodendroglioma

ASO:

Antisense oligonucleotide

DAG:

Diacylglycerol

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal regulated kinase

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

GBM:

Glioblastoma multiforme

GF:

Growth factor

Grb2:

Growth factor receptor-bound protein 2

IGF:

Insulin growth factor

IGFR:

Insulin growth factor receptor

LT:

Ligand linked targeted toxins

mAB:

Neutralizing monoclonal antibody

MAPK:

Mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

mTOR:

Mammalian target of rapamycin

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

PI3K:

Phosphatidyl-inositol-3-kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

rAAC:

Recurrent anaplastic astrocytoma

Ras-GAP:

GTPase-activating protein of Ras

Ras-GTP:

Ras-guanosine-triphosphate, active Ras

RTK:

Receptor tyrosine kinase

SMI-R:

Small molecule inhibitor of receptors

SMI-S:

Small molecule inhibitor of intracellular signaling molecules

SR:

Soluble receptor

TGF:

Transforming growth factor

TGFR:

Transforming growth factor receptor

References

  • Ali SA, McHayleh WM, Ahmad A et al (2008) Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases. J Neurosurg 109:268–272

    CAS  PubMed  Google Scholar 

  • Andrews DW, Resnicoff M, Flanders AE et al (2001) Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 19:2189–2200

    CAS  PubMed  Google Scholar 

  • Atkins M, Jones CA and Kirkpatrick P (2006) Sunitinib maleate. Nat Rev Drug Discov 5:279–280

    CAS  PubMed  Google Scholar 

  • Auguste P, Gursel DB, Lemiere S et al (2001) Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res 61:1717–1726

    CAS  PubMed  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A et al (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    CAS  PubMed  Google Scholar 

  • Baselga J (2001) The EGFR as a target for anticancer therapy–focus on cetuximab. Eur J Cancer 37 (Suppl 4):S16–S22

    CAS  PubMed  Google Scholar 

  • Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    CAS  PubMed  Google Scholar 

  • Bokstein F, Shpigel S and Blumenthal DT (2008) Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 112:2267–2273

    CAS  PubMed  Google Scholar 

  • Brysch W and Schlingensiepen KH (1994) Design and application of antisense oligonucleotides in cell culture, in vivo, and as therapeutic agents. Cell Mol Neurobiol 14:557–568

    CAS  PubMed  Google Scholar 

  • Burke PA, DeNardo SJ, Miers LA et al (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272

    CAS  PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    CAS  PubMed  Google Scholar 

  • Cao Y, Sundgren PC, Tsien CI et al (2006) Physiologic and metabolic magnetic resonance imaging in gliomas. J Clin Oncol 24:1228–1235

    PubMed  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    CAS  PubMed  Google Scholar 

  • Carmeliet P and Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    CAS  PubMed  Google Scholar 

  • Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    CAS  PubMed  Google Scholar 

  • Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289

    PubMed  Google Scholar 

  • Chang SM, Kuhn J, Wen P et al (2004) Phase I/pharmacokinetic study of CCI-779 in patients with recurrent malignant glioma on enzyme-inducing antiepileptic drugs. Invest New Drugs 22:427–435

    CAS  PubMed  Google Scholar 

  • Chang SM, Wen P, Cloughesy T et al (2005) Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23:357–361

    CAS  PubMed  Google Scholar 

  • ClinicalTrials (2003) Phase II evaluation of temozolomide and farnesyl transferase inhibitor (SCH66336) for the treatment of recurrent and progressive glioblastoma multiforme. Available at: http://utm-notes-db2.mdacc.tmc.edu/mdacc/ClinicalTrialsWP.nsf/Index/DM01–258

  • Cloughesy TF, Kuhn J and Py W (2002) Phase II trial of R115777 (Zarnestra) in patients with recurrent glioma not taking enzyme inducing anti-epileptic drugs (EIAED): a North American Brain Tumor Consortium (NABTC) report. Proc Am Soc Clin Oncol:21

    Google Scholar 

  • Cloughesy TF, Kuhn J, Robins HI et al (2005) Phase I trial of tipifarnib in patients with recurrent malignant glioma taking enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J Clin Oncol 23:6647–6656

    CAS  PubMed  Google Scholar 

  • Cloughesy TF, Wen PY, Robins HI et al (2006) Phase II trial of tipifarnib in patients with recurrent malignant glioma either receiving or not receiving enzyme-inducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J Clin Oncol 24:3651–3656

    CAS  PubMed  Google Scholar 

  • Daub H, Specht K and Ullrich A (2004) Strategies to overcome resistance to targeted protein kinase inhibitors. Nat Rev Drug Discov 3:1001–1010

    CAS  PubMed  Google Scholar 

  • de Bouard S, Herlin P, Christensen JG et al (2007) Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro-Oncologyogy 9:412–423

    Google Scholar 

  • Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329–1338

    CAS  PubMed  Google Scholar 

  • Desjardins A, Quinn JA, Vredenburgh JJ et al (2007) Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol 83:53–60

    CAS  PubMed  Google Scholar 

  • Doherty L, Gigas DC, Kesari S et al (2006) Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 67:156–158

    CAS  PubMed  Google Scholar 

  • Dresemann G (2005) Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 16:1702–1708

    CAS  PubMed  Google Scholar 

  • Duda DG, Cohen KS, Scadden DT et al (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2:805–810

    CAS  PubMed  Google Scholar 

  • Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    CAS  PubMed  Google Scholar 

  • Eckhardt SG, Rizzo J, Sweeney KR et al (1999) Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J Clin Oncol 17:1095–1104

    CAS  PubMed  Google Scholar 

  • Espina V, Wulfkuhle JD, Calvert VS et al (2007) Reverse phase protein microarrays for monitoring biological responses. Methods Mol Biol 383:321–336

    CAS  PubMed  Google Scholar 

  • Faivre S, Delbaldo C, Vera K et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35

    CAS  PubMed  Google Scholar 

  • Faivre S, Demetri G, Sargent W et al (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745

    CAS  PubMed  Google Scholar 

  • Farhadi MR, Capelle HH, Erber R et al (2005) Combined inhibition of vascular endothelial growth factor and platelet-derived growth factor signaling: effects on the angiogenesis, microcirculation, and growth of orthotopic malignant gliomas. J Neurosurg 102:363–370

    CAS  PubMed  Google Scholar 

  • Feldkamp MM, Lala P, Lau N et al (1999) Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45:1442–1453

    CAS  PubMed  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    CAS  PubMed  Google Scholar 

  • Franceschi E, Cavallo G, Lonardi S et al (2007) Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 96:1047–1051

    CAS  PubMed  Google Scholar 

  • Gagner JP, Law M, Fischer I et al (2005) Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol 15:342–363

    CAS  PubMed  Google Scholar 

  • Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304

    CAS  PubMed  Google Scholar 

  • Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    CAS  PubMed  Google Scholar 

  • Goodman SL, Holzemann G, Sulyok GA et al (2002) Nanomolar small molecule inhibitors for alphav(beta)6, alphav(beta)5, and alphav(beta)3 integrins. J Med Chem 45:1045–1051

    CAS  PubMed  Google Scholar 

  • Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    CAS  PubMed  Google Scholar 

  • Graff JR, McNulty AM, Hanna KR et al (2005) The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 65:7462–7469

    CAS  PubMed  Google Scholar 

  • Guiu S, Taillibert S, Chinot O et al (2008) Bevacizumab/irinotecan. An active treatment for recurrent high grade gliomas: preliminary results of an ANOCEF Multicenter Study. Rev Neurol 164:588–594

    CAS  PubMed  Google Scholar 

  • Hau P, Jachimczak P, Schlingensiepen R et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212

    CAS  PubMed  Google Scholar 

  • Hurwitz H and Saini S (2006) Bevacizumab in the treatment of metastatic colorectal cancer: safety profile and management of adverse events. Semin Oncol 33:S26–S34

    CAS  PubMed  Google Scholar 

  • Hutterer M, Gunsilius E and Stockhammer G (2006) Molecular therapies in malignant glioma - small molecular inhibitors, gene- and antisense therapy. Wiener Medizinische Wochenschrift 156:351–363

    PubMed  Google Scholar 

  • Institute NC (2006) Phase III randomized study of leflunomide (su101) versus procarbazine for patients with glioblastoma multiforme in first relapse (study has been completed, but not yet published). Available at: http://www.clinicaltrials.gov/ct/show/NCT00003293?order=1ClinicalTrials.gov Identifier: NCT00112788

  • Jachimczak P, Bogdahn U, Schneider J et al (1993) The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78:944–951

    CAS  PubMed  Google Scholar 

  • Jachimczak P, Hessdorfer B, Fabel-Schulte K et al (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65:332–337

    CAS  PubMed  Google Scholar 

  • Jacobs AH, Voges J, Kracht LW et al (2003) Imaging in gene therapy of patients with glioma. J Neurooncol 65:291–305

    CAS  PubMed  Google Scholar 

  • Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    CAS  PubMed  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    CAS  PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    CAS  PubMed  Google Scholar 

  • Jain RK, Safabakhsh N, Sckell A et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95:10820–10825

    CAS  PubMed  Google Scholar 

  • Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622

    CAS  PubMed  Google Scholar 

  • Kaim AH, Weber B, Kurrer MO et al (2002a) Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology 223:446–451

    PubMed  Google Scholar 

  • Kaim AH, Weber B, Kurrer MO et al (2002b) (18)F-FDG and (18)F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 29:648–654

    CAS  PubMed  Google Scholar 

  • Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312:1171–1175

    CAS  PubMed  Google Scholar 

  • Kleihues P and Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1:44–51

    CAS  PubMed  Google Scholar 

  • Kohler G and Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    CAS  PubMed  Google Scholar 

  • Kubota R, Yamada S, Kubota K et al (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    CAS  PubMed  Google Scholar 

  • Lai A, Filka E, McGibbon B et al (2008) Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 71:1372–1380

    CAS  PubMed  Google Scholar 

  • Laird AD, Vajkoczy P, Shawver LK et al (2000) SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res 60:4152–4160

    CAS  PubMed  Google Scholar 

  • Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    CAS  PubMed  Google Scholar 

  • Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  • Lieberman F, Cloughesy T and Deangelis L (2003) Phase I-II study of ZD-1839 for recurrent malignant gliomas and meningeomas progressing after radiation therapy. Proc Am Soc Clin Oncol:22

    Google Scholar 

  • Liu Y and Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364

    CAS  PubMed  Google Scholar 

  • Malkin M, Mason W, Liebermann F et al (1997) Phase I study of SU101, a novel signal transduction inhibitor, in recurrent malignant glioma. Proc Am Soc Clin Oncol:16

    Google Scholar 

  • Malkin M, Rosen L, Lopez A et al (1998) Phase 2 study of SU101, a PDGFR signal transduction inhibitor, in recurrent malignant glioma. Proc Am Soc Clin Oncol:17

    Google Scholar 

  • Mellinghoff IK, Wang MY, Vivanco I et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    CAS  PubMed  Google Scholar 

  • Millauer B, Shawver LK, Plate KH et al (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579

    CAS  PubMed  Google Scholar 

  • Millauer B, Longhi MP, Plate KH et al (1996) Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 56:1615–1620

    CAS  PubMed  Google Scholar 

  • Mohammadi M, McMahon G, Sun L et al (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960

    CAS  PubMed  Google Scholar 

  • Momota H, Nerio E and Holland EC (2005) Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res 65:7429–7435

    CAS  PubMed  Google Scholar 

  • Motzer RJ, Michaelson MD, Redman BG et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24

    CAS  PubMed  Google Scholar 

  • Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    CAS  PubMed  Google Scholar 

  • Nelson MH and Dolder CR (2006) Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 40:261–269

    CAS  PubMed  Google Scholar 

  • Newton HB (2002) Chemotherapy for the treatment of metastatic brain tumors. Expert Rev Anticancer Ther 2:495–506

    CAS  PubMed  Google Scholar 

  • Newton HB (2003) Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: growth factor and Ras signaling pathways. Expert Rev Anticancer Ther 3:595–614

    CAS  PubMed  Google Scholar 

  • Peery TS, Reardon DA and Quinn JA (2003) Phase II of ZD1839 for patients with first relapse glioblastoma. Proc Am Soc Clin Oncol 22

    Google Scholar 

  • Pope WB, Lai A, Nghiemphu P et al (2006) MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66:1258–1260

    CAS  PubMed  Google Scholar 

  • Prados MD, Lamborn KR, Chang S et al (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neurooncology 8:67–78

    CAS  Google Scholar 

  • Prante O, Blaser D, Maschauer S et al (2007) In vitro characterization of the thyroidal uptake of O-(2-[(18)F]fluoroethyl)-L-tyrosine. Nucl Med Biol 34:305–314

    CAS  PubMed  Google Scholar 

  • Preusser M, Gelpi E, Rottenfusser A et al (2008) Epithelial growth factor receptor inhibitors for treatment of recurrent or progressive high grade glioma: an exploratory study. J Neurooncol 89:211–218

    CAS  PubMed  Google Scholar 

  • Rau FC, Weber WA, Wester HJ et al (2002) O-(2-[(18)F]Fluoroethyl)- L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 29:1039–1046

    CAS  PubMed  Google Scholar 

  • Reardon DA, Egorin MJ, Quinn JA et al (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23:9359–9368

    CAS  PubMed  Google Scholar 

  • Reardon DA, Desjardins A, Vredenburgh JJ et al (2008a) Safety and pharmacokinetics of dose-intensive imatinib mesylate plus temozolomide: phase 1 trial in adults with malignant glioma. Neuro-Oncologyogy 10:330–340

    CAS  Google Scholar 

  • Reardon DA, Nabors LB, Stupp R et al (2008b) Cilengitide: an integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin Investig Drugs 17:1225–1235

    CAS  PubMed  Google Scholar 

  • Resnicoff M, Sell C, Rubini M et al (1994) Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res 54:2218–2222

    CAS  PubMed  Google Scholar 

  • Rich JN, Reardon DA, Peery T et al (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:133–142

    CAS  PubMed  Google Scholar 

  • Richly H, Henning BF, Kupsch P et al (2006) Results of a Phase I trial of sorafenib (BAY 43–9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol 17:866–873

    CAS  PubMed  Google Scholar 

  • Rowinsky EK, Windle JJ and Von Hoff DD (1999) Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol 17:3631–3652

    CAS  PubMed  Google Scholar 

  • Rugo HS, Herbst RS, Liu G et al (2005) Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol 23:5474–5483

    CAS  PubMed  Google Scholar 

  • Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    CAS  PubMed  Google Scholar 

  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al (2006) Targeted tumor therapy with the TGF-beta2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139

    CAS  PubMed  Google Scholar 

  • Schlingensiepen KH, Fischer-Blass B, Schmaus S et al (2008) Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 177:137–150

    CAS  PubMed  Google Scholar 

  • Schrama D, Reisfeld RA and Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    CAS  PubMed  Google Scholar 

  • Shah GD, Silver JS, Rosenfeld SS et al (2007) Myelosuppression in patients benefiting from imatinib with hydroxyurea for recurrent malignant gliomas. J Neurooncol 85:217–222

    CAS  PubMed  Google Scholar 

  • Shapiro JR, Ashby L, Obbens E et al (1999) Phase I/II study of SU101 in combination with carmustine in the treatment of patients newly dignosed with malignant glioma. Neurooncology 1:55

    Google Scholar 

  • Shaul M, Abourbeh G, Jacobson O et al (2004) Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 12:3421–3429

    CAS  PubMed  Google Scholar 

  • Sibtain NA, Howe FA and Saunders DE (2007) The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 62:109–119

    CAS  PubMed  Google Scholar 

  • Siu LL, Awada A, Takimoto CH et al (2006) Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res 12:144–151

    CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    CAS  PubMed  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    CAS  PubMed  Google Scholar 

  • Strebhardt K and Ullrich A (2008) Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    CAS  PubMed  Google Scholar 

  • Trojan J, Johnson TR, Rudin SD et al (1993) Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA. Science 259:94–97

    CAS  PubMed  Google Scholar 

  • van de Beek D (2007) Brain teasing effect of dexamethasone. Lancet Neurol 6:203–204

    PubMed  Google Scholar 

  • Verheul HM and Pinedo HM (2007) Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7:475–485

    CAS  PubMed  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al (2007a) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259

    CAS  PubMed  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al (2007b) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    CAS  PubMed  Google Scholar 

  • Waldherr C, Mellinghoff IK, Tran C et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 46:114–120

    CAS  PubMed  Google Scholar 

  • Weichselbaum RR (2005) How does antiangiogenic therapy affect brain tumor response to radiation? Nat Clin Pract Oncol 2:232–233

    CAS  PubMed  Google Scholar 

  • Wen PY and Yung WK (2002) Phase I study of STI571 (Gleevec) for patients with recurrent malignant gliomas and meningeomas (NABTC 99–08). Proc Am Soc Clin Oncol:21

    Google Scholar 

  • Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12:4899–4907

    CAS  PubMed  Google Scholar 

  • Willett CG, Kozin SV, Duda DG et al (2006) Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 33:S35–S40

    CAS  PubMed  Google Scholar 

  • Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  • Wu G, Yang W, Barth RF et al (2007) Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res 13:1260–1268

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hutterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutterer, M., Stockhammer, G. (2009). Molecular Therapies for Malignant Gliomas. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_3

Download citation

Publish with us

Policies and ethics