Skip to main content

Molecular Neurooncology and Neoangiogenesis of Malignant Gliomas

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

Malignant gliomas are the most common and most aggressive primary brain tumors in adults. Advances in surgery, radiotherapy and chemotherapy only have a minor impact on the natural course of these tumors. Due to the dismal prognosis of malignant glioma patients, there is an urgent need for new innovative treatments based on a better understanding of the molecular mechanisms of gliomagenesis. Many growth factors, growth factor receptors – usually receptor tyrosine kinases – and receptor-associated intracellular signaling pathways are critically involved in glioma growth, invasiveness and tumor neovascularization.

Therefore, this chapter highlights the most important signaling pathways involved in initiation and progression of malignant gliomas. The knowledge of these pathways is the rationale of several concepts of new innovative molecular therapies in modern neurooncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAC:

Anaplastic astrocytoma

AG:

Anaplastic glioma

AOD:

Anaplastic oligodendroglioma

ASO:

Antisense oligonucleotide

ClR:

Clinical response

CR:

Complete response

DAG:

Diacylglycerol

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal regulated kinase

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

GBM:

Glioblastoma multiforme

GF:

Growth factor

Grb2:

Growth factor receptor-bound protein 2

IGF:

Insulin growth factor

IGFR:

Insulin growth factor receptor

LT:

Ligand linked targeted toxins

mAB:

Neutralizing monoclonal antibody

MAPK:

Mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

mTOR:

Mammalian target of rapamycin

PD:

Progressive disease

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

PI3K:

Phosphatidyl-inositol-3-kinase

PKC:

Proteinkinase C

PLC:

Phospholipase C

PR:

Partial response

rAAC:

Recurrent anaplastic astrocytoma

Ras-GAP:

GTPase-activating protein of Ras

Ras-GTP:

Ras-guanosine-triphosphate, active Ras

rGBM:

Recurrent glioblastoma multiforme

rHGG:

Recurrent high grade Glioma

RTK:

Receptor tyrosine kinase

SD:

Stable disease

SR:

Soluble receptor

SMI-R:

Small molecule inhibitor of receptors

SMI-S:

Small molecule inhibitor of intracellular signaling molecules

TGF:

Transforming growth factor

TGFR:

Transforming growth factor receptor

References

  • Aaronson SA (1991) Growth factors and cancer. Science 254:1146–1153

    CAS  PubMed  Google Scholar 

  • Adjei AA (2001) Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93:1062–1074

    CAS  PubMed  Google Scholar 

  • Andjelkovic M, Alessi DR, Meier R et al (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272:31515–31524

    CAS  PubMed  Google Scholar 

  • Arteaga CL (2001) The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 19:32S–40S

    CAS  PubMed  Google Scholar 

  • Bajetto A, Barbieri F, Pattarozzi A et al (2007) CXCR4 and SDF1 expression in human meningiomas: a proliferative role in tumoral meningothelial cells in vitro. Neuro-Oncology 9:3–11

    CAS  PubMed  Google Scholar 

  • Barker FG 2nd, Simmons ML, Chang SM et al (2001) EGFR overexpression and radiation response in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 51:410–418

    CAS  PubMed  Google Scholar 

  • Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    CAS  PubMed  Google Scholar 

  • Belanich M, Pastor M, Randall T et al (1996) Retrospective study of the correlation between the DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. Cancer Res 56:783–788

    CAS  PubMed  Google Scholar 

  • Biernat W, Huang H, Yokoo H et al (2004) Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 14:131–136

    CAS  PubMed  Google Scholar 

  • Birner P, Piribauer M, Fischer I et al (2003) Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins: evidence for distinct angiogenic subtypes. Brain Pathol 13:133–143

    CAS  PubMed  Google Scholar 

  • Blancher C, Moore JW, Robertson N et al (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res 61:7349–7355

    CAS  PubMed  Google Scholar 

  • Blobe GC, Schiemann WP and Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    CAS  PubMed  Google Scholar 

  • Boguski MS and McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    CAS  PubMed  Google Scholar 

  • Bollag G and McCormick F (1991) Regulators and effectors of ras proteins. Annu Rev Cell Biol 7:601–632

    CAS  PubMed  Google Scholar 

  • Brat DJ and Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 84:397–405

    CAS  PubMed  Google Scholar 

  • Brat DJ, Castellano-Sanchez AA, Hunter SB et al (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927

    CAS  PubMed  Google Scholar 

  • Brat DJ, Bellail AC and Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology 7:122–133

    CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    CAS  PubMed  Google Scholar 

  • Bullitt E, Zeng D, Gerig G et al (2005) Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol 12:1232–1240

    PubMed  Google Scholar 

  • Cantley LC and Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245

    CAS  PubMed  Google Scholar 

  • Cantley LC, Auger KR, Carpenter C et al (1991) Oncogenes and signal transduction. Cell 64:281–302

    CAS  PubMed  Google Scholar 

  • Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    CAS  PubMed  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    CAS  PubMed  Google Scholar 

  • Carmeliet P and Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Lampugnani MG, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    CAS  PubMed  Google Scholar 

  • Carpenter G and Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48:193–216

    CAS  PubMed  Google Scholar 

  • Choe G, Horvath S, Cloughesy TF et al (2003) Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63:2742–2746

    CAS  PubMed  Google Scholar 

  • Choe G, Park JK, Jouben-Steele L et al (2002) Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin Cancer Res 8:2894–2901

    CAS  PubMed  Google Scholar 

  • Couldwell WT, de Tribolet N, Antel JP et al (1992) Adhesion molecules and malignant gliomas: implications for tumorigenesis. J Neurosurg 76:782–791

    CAS  PubMed  Google Scholar 

  • Datta SR, Brunet A and Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    CAS  PubMed  Google Scholar 

  • Davis S, Aldrich TH, Jones PF et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    CAS  PubMed  Google Scholar 

  • de Caestecker MP, Piek E and Roberts AB (2000) Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst 92:1388–1402

    PubMed  Google Scholar 

  • Deeken JF and Loscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    CAS  PubMed  Google Scholar 

  • Dennis PB, Fumagalli S and Thomas G (1999) Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr Opin Genet Dev 9:49–54

    CAS  PubMed  Google Scholar 

  • Di Rocco F, Carroll RS, Zhang J et al (1998) Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42:341–346

    PubMed  Google Scholar 

  • Ding H, Roncari L, Shannon P et al (2001a) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61:3826–3836

    CAS  PubMed  Google Scholar 

  • Ding H, Roncari L, Wu X et al (2001b) Expression and hypoxic regulation of angiopoietins in human astrocytomas. Neuro-Oncology 3:1–10

    CAS  PubMed  Google Scholar 

  • Duda DG, Cohen KS, Kozin SV et al (2006) Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood 107:2774–2776

    CAS  PubMed  Google Scholar 

  • Duerr EM, Rollbrocker B, Hayashi Y et al (1998) PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16:2259–2264

    CAS  PubMed  Google Scholar 

  • Dunn IF, Heese O and Black PM (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 50:121–137

    CAS  PubMed  Google Scholar 

  • Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    CAS  PubMed  Google Scholar 

  • Ekstrand AJ, Sugawa N, James CD et al (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89:4309–4313

    Google Scholar 

  • Ekstrand AJ, Longo N, Hamid ML et al (1994) Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9:2313–2320

    Google Scholar 

  • El-Obeid A, Bongcam-Rudloff E, Sorby M et al (1997) Cell scattering and migration induced by autocrine transforming growth factor alpha in human glioma cells in vitro. Cancer Res 57:5598–5604

    CAS  PubMed  Google Scholar 

  • Ermoian RP, Furniss CS, Lamborn KR et al (2002) Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8:1100–1106

    CAS  PubMed  Google Scholar 

  • Feldkamp MM, Lala P, Lau N et al (1999) Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45:1442–1453

    CAS  PubMed  Google Scholar 

  • Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    CAS  PubMed  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discovery 3:391–400

    CAS  Google Scholar 

  • Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10:257–269, vii-viiii

    CAS  PubMed  Google Scholar 

  • Fischer I, Gagner JP, Law M et al (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310

    CAS  PubMed  Google Scholar 

  • Folkman J (1995) Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333:1757–1763

    CAS  PubMed  Google Scholar 

  • Frederick L, Wang XY, Eley G et al (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387

    CAS  PubMed  Google Scholar 

  • Fredriksson L, Li H and Eriksson U (2004) The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15:197–204

    CAS  PubMed  Google Scholar 

  • Friedlander M, Brooks PC, Shaffer RW et al (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502

    CAS  PubMed  Google Scholar 

  • Fujisawa H, Reis RM, Nakamura M et al (2000) Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 80:65–72

    CAS  PubMed  Google Scholar 

  • Fukui S, Nawashiro H, Otani N et al (2003) Nuclear accumulation of basic fibroblast growth factor in human astrocytic tumors. Cancer 97:3061–3067

    CAS  PubMed  Google Scholar 

  • Fukumura D, Xavier R, Sugiura T et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    CAS  PubMed  Google Scholar 

  • Fukumura D, Xu L, Chen Y et al (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024

    CAS  PubMed  Google Scholar 

  • Furuta M, Weil RJ, Vortmeyer AO et al (2004) Protein patterns and proteins that identify subtypes of glioblastoma multiforme. Oncogene 23:6806–6814

    CAS  PubMed  Google Scholar 

  • Gagnon ML, Bielenberg DR, Gechtman Z et al (2000) Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: in vivo expression and antitumor activity. Proc Natl Acad Sci USA 97:2573–2578

    CAS  PubMed  Google Scholar 

  • Gladson CL (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55:1143–1149

    CAS  PubMed  Google Scholar 

  • Godard S, Getz G, Delorenzi M et al (2003) Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63:6613–6625

    CAS  PubMed  Google Scholar 

  • Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    CAS  PubMed  Google Scholar 

  • Goth R and Rajewsky MF (1974) Persistence of O6-ethylguanine in rat-brain DNA: correlation with nervous system-specific carcinogenesis by ethylnitrosourea. Proc Natl Acad Sci USA 71:639–643

    CAS  PubMed  Google Scholar 

  • Gridley T (2007) Vascular biology: vessel guidance. Nature 445:722–723

    CAS  PubMed  Google Scholar 

  • Grunewald M, Avraham I, Dor Y et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    CAS  PubMed  Google Scholar 

  • Guha A, Dashner K, Black PM et al (1995) Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 60:168–173

    CAS  PubMed  Google Scholar 

  • Guha A, Feldkamp MM, Lau N et al (1997) Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15:2755–2765

    CAS  PubMed  Google Scholar 

  • Guo P, Hu B, Gu W et al (2003) Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162:1083–1093

    CAS  PubMed  Google Scholar 

  • Hackel PO, Zwick E, Prenzel N et al (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11:184–189

    CAS  PubMed  Google Scholar 

  • Hafizi S and Dahlback B (2006) Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev 17(4):295–304

    CAS  PubMed  Google Scholar 

  • Hanahan D and Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    CAS  PubMed  Google Scholar 

  • Hanahan D and Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Hattori K, Heissig B, Tashiro K et al (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97:3354–3360

    CAS  PubMed  Google Scholar 

  • Hatva E, Kaipainen A, Mentula P et al (1995) Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 146:368–378

    CAS  PubMed  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    CAS  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M et al (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    CAS  PubMed  Google Scholar 

  • Hermansson M, Nister M, Betsholtz C et al (1988) Endothelial cell hyperplasia in human glioblastoma: coexpression of mRNA for platelet-derived growth factor (PDGF) B chain and PDGF receptor suggests autocrine growth stimulation. Proc Natl Acad Sci USA 85:7748–7752

    CAS  PubMed  Google Scholar 

  • Hermanson M, Funa K, Hartman M et al (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219

    CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    CAS  PubMed  Google Scholar 

  • Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    CAS  PubMed  Google Scholar 

  • Hood JD and Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    PubMed  Google Scholar 

  • Hu B, Jarzynka MJ, Guo P et al (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66:775–783

    CAS  PubMed  Google Scholar 

  • Huang HS, Nagane M, Klingbeil CK et al (1997) The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 272:2927–2935

    CAS  PubMed  Google Scholar 

  • Hubbard SR and Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398

    CAS  PubMed  Google Scholar 

  • Hurtt MR, Moossy J, Donovan-Peluso M et al (1992) Amplification of epidermal growth factor receptor gene in gliomas: histopathology and prognosis. J Neuropathol Exp Neurol 51:84–90

    CAS  PubMed  Google Scholar 

  • Hutterer M, Knyazev P, Abate A et al (2008) Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res 14:130–138

    CAS  PubMed  Google Scholar 

  • Ichimura K, Schmidt EE, Miyakawa A et al (1998) Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades. Genes Chromosomes Cancer 22:9–15

    CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    CAS  PubMed  Google Scholar 

  • Isoe S, Naganuma H, Nakano S et al (1998) Resistance to growth inhibition by transforming growth factor-beta in malignant glioma cells with functional receptors. J Neurosurg 88:529–534

    CAS  PubMed  Google Scholar 

  • Izumi Y, Xu L, di Tomaso E et al (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280

    CAS  PubMed  Google Scholar 

  • Jain RK (1998) The next frontier of molecular medicine: delivery of therapeutics. Nat Med 4:655–657

    CAS  PubMed  Google Scholar 

  • Jain RK, Munn LL and Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276

    CAS  PubMed  Google Scholar 

  • Jain RK, Tong RT and Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67:2729–2735

    CAS  PubMed  Google Scholar 

  • Janssen JW, Schulz AS, Steenvoorden AC et al (1991) A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene 6:2113–2120

    CAS  PubMed  Google Scholar 

  • Jennings MT and Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol 36:123–140

    CAS  PubMed  Google Scholar 

  • Jiang BH, Jiang G, Zheng JZ et al (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12:363–369

    CAS  PubMed  Google Scholar 

  • Johansson M, Brannstrom T, Bergenheim AT et al (2002) Spatial expression of VEGF-A in human glioma. J Neurooncol 59:1–6

    PubMed  Google Scholar 

  • Joy A, Moffett J, Neary K et al (1997) Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 14:171–183

    CAS  PubMed  Google Scholar 

  • Karcher S, Steiner HH, Ahmadi R et al (2006) Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 118:2182–2189

    CAS  PubMed  Google Scholar 

  • Kita D, Yonekawa Y, Weller M et al (2007) PIK3CA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol 113:295–302

    CAS  PubMed  Google Scholar 

  • Klagsbrun M (1989) The fibroblast growth factor family: structural and biological properties. Prog Growth Factor Res 1:207–235

    CAS  PubMed  Google Scholar 

  • Kleihues P and Sobin LH (2000) World Health Organization classification of tumors. Cancer 88:2887

    CAS  PubMed  Google Scholar 

  • Knobbe CB, Merlo A and Reifenberger G (2002) Pten signaling in gliomas. Neuro-Oncology 4:196–211

    CAS  PubMed  Google Scholar 

  • Komine C, Watanabe T, Katayama Y et al (2003) Promoter hypermethylation of the DNA repair gene O6-methylguanine-DNA methyltransferase is an independent predictor of shortened progression free survival in patients with low-grade diffuse astrocytomas. Brain Pathol 13:176–184

    CAS  PubMed  Google Scholar 

  • Kubiatowski T, Jang T, Lachyankar MB et al (2001) Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 95:480–488

    CAS  PubMed  Google Scholar 

  • Lal A, Glazer CA, Martinson HM et al (2002) Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62:3335–3339

    CAS  PubMed  Google Scholar 

  • Le Roith D (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med 336:633–640

    PubMed  Google Scholar 

  • Leenders WP, Kusters B and de Waal RM (2002) Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9:83–87

    PubMed  Google Scholar 

  • Leon SP, Folkerth RD and Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77:362–372

    CAS  PubMed  Google Scholar 

  • Leslie JD, Ariza-McNaughton L, Bermange AL et al (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134:839–844

    CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    CAS  PubMed  Google Scholar 

  • Lokker NA, Sullivan CM, Hollenbach SJ et al (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62:3729–3735

    CAS  PubMed  Google Scholar 

  • Lowy DR and Willumsen BM (1993) Function and regulation of ras. Annu Rev Biochem 62:851–891

    CAS  PubMed  Google Scholar 

  • Machein MR and Plate KH (2000) VEGF in brain tumors. J Neurooncol 50:109–120

    CAS  PubMed  Google Scholar 

  • Machein MR, Kullmer J, Fiebich BL et al (1999) Vascular endothelial growth factor expression, vascular volume, and, capillary permeability in human brain tumors. Neurosurgery 44:732–740; discussion 740–731

    CAS  PubMed  Google Scholar 

  • Maehama T and Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    CAS  PubMed  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    CAS  PubMed  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    CAS  PubMed  Google Scholar 

  • Maity A, Pore N, Lee J et al (2000) Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res 60:5879–5886

    CAS  PubMed  Google Scholar 

  • Manfioletti G, Brancolini C, Avanzi G et al (1993) The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol 13:4976–4985

    CAS  PubMed  Google Scholar 

  • Margison GP and Kleihues P (1975) Chemical carcinogenesis in the nervous system. Preferential accumulation of O6-methylguanine in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea. Biochem J 148:521–525

    CAS  PubMed  Google Scholar 

  • Martin KA and Blenis J (2002) Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 86:1–39

    CAS  PubMed  Google Scholar 

  • Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    CAS  PubMed  Google Scholar 

  • Maxwell M, Naber SP, Wolfe HJ et al (1990) Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. J Clin Invest 86:131–140

    CAS  PubMed  Google Scholar 

  • Melder RJ, Koenig GC, Witwer BP et al (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 2:992–997

    CAS  PubMed  Google Scholar 

  • Millauer B, Shawver LK, Plate KH et al (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579

    CAS  PubMed  Google Scholar 

  • Mineo JF, Bordron A, Baroncini M et al (2007) Low HER2-expressing glioblastomas are more often secondary to anaplastic transformation of low-grade glioma. J Neurooncol 85:281–287

    PubMed  Google Scholar 

  • Monsky WL, Fukumura D, Gohongi T et al (1999) Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 59:4129–4135

    CAS  PubMed  Google Scholar 

  • Nakamura M, Yang F, Fujisawa H et al (2000) Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol 59:539–543

    CAS  PubMed  Google Scholar 

  • Nakamura M, Watanabe T, Klangby U et al (2001) p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11:159–168

    CAS  PubMed  Google Scholar 

  • Nakamura M, Ishida E, Shimada K et al (2005) Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175

    CAS  PubMed  Google Scholar 

  • Narita Y, Nagane M, Mishima K et al (2002) Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res 62:6764–6769

    CAS  PubMed  Google Scholar 

  • Neuwelt E, Abbott NJ, Abrey L et al (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96

    CAS  PubMed  Google Scholar 

  • Nishikawa R, Ji XD, Harmon RC et al (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91:7727–7731

    CAS  PubMed  Google Scholar 

  • O'Bryan JP, Frye RA, Cogswell PC et al (1991) axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 11:5016–5031

    PubMed  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    CAS  PubMed  Google Scholar 

  • Ohgaki H and Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    CAS  PubMed  Google Scholar 

  • Ohgaki H and Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    CAS  PubMed  Google Scholar 

  • Padera TP, Stoll BR, Tooredman JB et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695

    CAS  PubMed  Google Scholar 

  • Park JS, Qiao L, Su ZZ et al (2001) Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways. Oncogene 20:3266–3280

    CAS  PubMed  Google Scholar 

  • Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320

    CAS  PubMed  Google Scholar 

  • Plate KH and Mennel HD (1995) Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 47:89–94

    CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Farrell CL et al (1992a) Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 67:529–534

    CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA et al (1992b) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA et al (1994) Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59:520–529

    CAS  PubMed  Google Scholar 

  • Platten M, Wick W and Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410

    CAS  PubMed  Google Scholar 

  • Qian XC and Brent TP (1997) Methylation hot spots in the 5′ flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene. Cancer Res 57:3672–3677

    CAS  PubMed  Google Scholar 

  • Rameh LE and Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274:8347–8350

    CAS  PubMed  Google Scholar 

  • Rasheed BK, McLendon RE, Friedman HS et al (1995) Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene 10:2243–2246

    CAS  PubMed  Google Scholar 

  • Rasheed BK, Stenzel TT, McLendon RE et al (1997) PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 57:4187–4190

    CAS  PubMed  Google Scholar 

  • Reiss Y, Machein MR and Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317

    CAS  PubMed  Google Scholar 

  • Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087

    CAS  PubMed  Google Scholar 

  • Rowinsky EK, Windle JJ and Von Hoff DD (1999) Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol 17:3631–3652

    CAS  PubMed  Google Scholar 

  • Rutka JT, Apodaca G, Stern R et al (1988) The extracellular matrix of the central and peripheral nervous systems: structure and function. J Neurosurg 69:155–170

    CAS  PubMed  Google Scholar 

  • Sakata K, Kato S, Fox JC et al (2002) Autocrine signaling through Ras regulates cell survival activity in human glioma cells: potential cross-talk between Ras and the phosphatidylinositol 3-kinase-Akt pathway. J Neuropathol Exp Neurol 61:975–983

    CAS  PubMed  Google Scholar 

  • Salmaggi A, Eoli M, Frigerio S et al (2003) Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J Neurooncol 62:297–303

    PubMed  Google Scholar 

  • Samoto K, Ikezaki K, Ono M et al (1995) Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55:1189–1193

    CAS  PubMed  Google Scholar 

  • Samuels V, Barrett JM, Bockman S et al (1989) Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas. Am J Pathol 134:894–902

    CAS  PubMed  Google Scholar 

  • Sano T, Lin H, Chen X et al (1999) Differential expression of MMAC/PTEN in glioblastoma multiforme: relationship to localization and prognosis. Cancer Res 59:1820–1824

    CAS  PubMed  Google Scholar 

  • Sasaki H, Zlatescu MC, Betensky RA et al (2001) PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol 159:359–367

    CAS  PubMed  Google Scholar 

  • Schmelzle T and Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    CAS  PubMed  Google Scholar 

  • Sekulic A, Hudson CC, Homme JL et al (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    CAS  PubMed  Google Scholar 

  • Shapiro JR (2001) Genetics of nervous system tumors. Hematol Oncol Clin North Am 15:961–977

    CAS  PubMed  Google Scholar 

  • Shawver LK, Slamon D and Ullrich A (2002) Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1:117–123

    CAS  PubMed  Google Scholar 

  • Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    CAS  PubMed  Google Scholar 

  • Smith JS, Tachibana I, Passe SM et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256

    CAS  PubMed  Google Scholar 

  • Sonoda Y, Ozawa T, Aldape KD et al (2001) Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res 61:6674–6678

    CAS  PubMed  Google Scholar 

  • Stan AC, Nemati MN, Pietsch T et al (1995) In vivo inhibition of angiogenesis and growth of the human U-87 malignant glial tumor by treatment with an antibody against basic fibroblast growth factor. J Neurosurg 82:1044–1052

    CAS  PubMed  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    CAS  PubMed  Google Scholar 

  • Stefanik DF, Rizkalla LR, Soi A et al (1991) Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res 51:5760–5765

    CAS  PubMed  Google Scholar 

  • Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018

    CAS  PubMed  Google Scholar 

  • Stockhammer G, Obwegeser A, Kostron H et al (2000a) Vascular endothelial growth factor (VEGF) is elevated in brain tumor cysts and correlates with tumor progression. Acta Neuropathol 100:101–105

    CAS  PubMed  Google Scholar 

  • Stockhammer G, Poewe W, Burgstaller S et al (2000b) Vascular endothelial growth factor in CSF: a biological marker for carcinomatous meningitis. Neurology 54:1670–1676

    CAS  PubMed  Google Scholar 

  • Stoeckli ET and Landmesser LT (1995) Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 14:1165–1179

    CAS  PubMed  Google Scholar 

  • Stratmann A, Risau W and Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466

    CAS  PubMed  Google Scholar 

  • Strebhardt K and Ullrich A (2008) Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  • Sun L, Hui AM, Su Q et al (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9:287–300

    CAS  PubMed  Google Scholar 

  • Takahashi JA, Fukumoto M, Igarashi K et al (1992) Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas. J Neurosurg 76:792–798

    CAS  PubMed  Google Scholar 

  • Tamura M, Gu J, Tran H et al (1999) PTEN gene and integrin signaling in cancer. J Natl Cancer Inst 91:1820–1828

    CAS  PubMed  Google Scholar 

  • Tang P, Steck PA and Yung WK (1997) The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol 35:303–314

    CAS  PubMed  Google Scholar 

  • Tee AR, Fingar DC, Manning BD et al (2002) Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99:13571–13576

    CAS  PubMed  Google Scholar 

  • Tohma Y, Gratas C, Biernat W et al (1998) PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57:684–689

    CAS  PubMed  Google Scholar 

  • Trojan J, Cloix JF, Ardourel MY et al (2007) Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 145:795–811

    CAS  PubMed  Google Scholar 

  • Tsai JC, Goldman CK and Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 82:864–873

    CAS  PubMed  Google Scholar 

  • Tso CL, Freije WA, Day A et al (2006) Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 66:159–167

    CAS  PubMed  Google Scholar 

  • Uhm JH, Dooley NP, Villemure JG et al (1997) Mechanisms of glioma invasion: role of matrix-metalloproteinases. Can J Neurol Sci 24:3–15

    CAS  PubMed  Google Scholar 

  • Vajkoczy P, Knyazev P, Kunkel A et al (2006) Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci USA 103:5799–5804

    CAS  PubMed  Google Scholar 

  • Valk PE, Mathis CA, Prados MD et al (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33:2133–2137

    CAS  PubMed  Google Scholar 

  • Varlet P, Guillamo JS, Nataf F et al (2000) Vascular endothelial growth factor expression in oligodendrogliomas: a correlative study with Sainte-Anne malignancy grade, growth fraction and patient survival. Neuropathol Appl Neurobiol 26:379–389

    CAS  PubMed  Google Scholar 

  • Varnum BC, Young C, Elliott G et al (1995) Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373:623–626

    CAS  PubMed  Google Scholar 

  • Vazquez F and Sellers WR (2000) The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta 1470:M21–35

    CAS  PubMed  Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N et al (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20:5010–5018

    CAS  PubMed  Google Scholar 

  • Vazquez F, Grossman SR, Takahashi Y et al (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276:48627–48630

    CAS  PubMed  Google Scholar 

  • Vivanco I and Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    CAS  PubMed  Google Scholar 

  • Vogelstein B and Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    CAS  PubMed  Google Scholar 

  • von Deimling A, Louis DN and Wiestler OD (1995) Molecular pathways in the formation of gliomas. Glia 15:328–338

    Google Scholar 

  • Wang SI, Puc J, Li J et al (1997) Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57:4183–4186

    CAS  PubMed  Google Scholar 

  • Walker MD, Green SB, Byar DP et al. (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329

    Google Scholar 

  • Watanabe K, Tachibana O, Sata K et al (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223; discussion 223–214

    CAS  PubMed  Google Scholar 

  • Watts GS, Pieper RO, Costello JF et al (1997) Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol Cell Biol 17:5612–5619

    CAS  PubMed  Google Scholar 

  • Weissman DE (1988) Glucocorticoid treatment for brain metastases and epidural spinal cord compression: a review. J Clin Oncol 6:543–551

    CAS  PubMed  Google Scholar 

  • Wen S, Stolarov J, Myers MP et al (2001) PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci USA 98:4622–4627

    CAS  PubMed  Google Scholar 

  • Wesseling P, Ruiter DJ and Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32:253–265

    CAS  PubMed  Google Scholar 

  • Westermark B, Heldin CH and Nister M (1995) Platelet-derived growth factor in human glioma. Glia 15:257–263

    CAS  PubMed  Google Scholar 

  • Wick W, Platten M and Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185

    CAS  PubMed  Google Scholar 

  • Williams CK, Li JL, Murga M et al (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107:931–939

    CAS  PubMed  Google Scholar 

  • Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  • Wymann MP and Pirola L (1998) Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436:127–150

    CAS  PubMed  Google Scholar 

  • Yamaguchi F, Saya H, Bruner JM et al (1994) Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA 91:484–488

    CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    CAS  PubMed  Google Scholar 

  • Yu H and Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92:1472–1489

    CAS  PubMed  Google Scholar 

  • Yuan F, Salehi HA, Boucher Y et al (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54:4564–4568

    CAS  PubMed  Google Scholar 

  • Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400

    CAS  PubMed  Google Scholar 

  • Zagzag D, Zhong H, Scalzitti JM et al (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618

    CAS  PubMed  Google Scholar 

  • Zwick E, Bange J and Ullrich A (2002) Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med 8:17–23

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hutterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutterer, M., Stockhammer, G. (2009). Molecular Neurooncology and Neoangiogenesis of Malignant Gliomas. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_2

Download citation

Publish with us

Policies and ethics