Skip to main content

Brain Tumor Therapy with Antisense Oligonucleotides

  • Chapter
  • First Online:
  • 426 Accesses

Abstract

Antisense oligonucleotides (AON), short oligonucleotides of DNA, which selectively bind to complementary mRNA inside the cytoplasm, can specifically block genes and production of designated proteins. The use of AP12009 against TGF-β2 has been the most frequently studied antisense therapy for brain tumors so far. Further oncogenes e.g. c-Met, RAS or Bcl-2, the growth factors VEGF, EGFR, IGF-1 or the enzyme telomerase have been suggested as such targets. Other antisense strategies deal with an immunological approach such as the use of AON with CpG motifs. Systemic therapy with AON is limited by its degradation in plasma and, in case of brain tumors, by the blood–brain-barrier. Many studies approach these problems with a construction of modified AON, with coupling to liposomes or nanoparticles or with direct administration into the brain via convection-enhanced delivery. All antisense strategies are promising options, but currently and in the foreseeable future there is no cure for malignant glioma by a single therapeutical regime. Possibly a combination of several strategies may be a more effective approach for these cruel tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AON:

Antisense oligonucleotides

BBB:

Blood–brain-barrier

CED:

Convection-enhanced delivery

CNS:

Central nervous system

CSF:

Cerebro-spinal fluid

EGFR:

Epidermal growth factor receptor

IGF-I:

Insulin-like growth factor type I

PKC-\alpha:

Protein kinase C alpha

TGF:

Transforming growth factor

VEGF:

Vascular endothelial growth factor

References

  • Bakhshi A, Jensen JP, Goldman P et al (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906

    CAS  PubMed  Google Scholar 

  • Bickel U, Yoshikawa T, Pardridge WM (2001) Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 46:247–279

    CAS  PubMed  Google Scholar 

  • Birrenbach G, Speiser PP (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65:1763–1766

    CAS  PubMed  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573

    CAS  PubMed  Google Scholar 

  • Boado RJ, Tsukamoto H, Pardridge WM (1998) Drug delivery of antisense molecules to the brain for treatment of Alzheimer's disease and cerebral AIDS. J Pharm Sci 87:1308–1315

    CAS  PubMed  Google Scholar 

  • Bobo RH, Laske DW, Akbasak A et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91:2076–2080

    CAS  PubMed  Google Scholar 

  • Bodmer S, Strommer K, Frei K et al (1989) Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β2. J Immunol 143:3222–3229

    CAS  PubMed  Google Scholar 

  • Broaddus WC, Prabhu SS, Gillies GT et al (1998) Distribution and stability of antisense phosphorothioate oligonucleotides in rodent brain following direct intraparenchymal controlled-rate infusion. J Neurosurg 88:734–742

    CAS  PubMed  Google Scholar 

  • Carpentier A, Laigle-Donadey F, Zohar S et al (2006) Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol 8:60–66

    CAS  PubMed  Google Scholar 

  • Castle VP, Heidelberger KP, Bromberg J et al (1993) Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am J Pathol 143:1543–1550

    CAS  PubMed  Google Scholar 

  • Cheng SY, Huang HJ, Nagane M et al (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93:8502–8507

    CAS  PubMed  Google Scholar 

  • Chu SH, Zhang H, Ma YB et al (2007) c-Met antisense oligodeoxynucleotides as a novel therapeutic agent for glioma:in vitro and in vivo studies of uptake, effects, and toxicity. J Surg Res 141:284–288

    CAS  PubMed  Google Scholar 

  • Chu SH, Zhu ZA, Yuan XH et al (2006) In vitro and in vivo potentiating the cytotoxic effect of radiation on human U251 gliomas by the c-Met antisense oligodeoxynucleotides. J Neurooncol 80:143–149

    CAS  PubMed  Google Scholar 

  • Couvreur P, Kante B, Roland M et al (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331–332

    CAS  PubMed  Google Scholar 

  • Crooke ST (1998) Vitravene – another piece in the mosaic. Antisense Nucleic Acid Drug Dev 8:vii-viii

    CAS  PubMed  Google Scholar 

  • Crooke ST (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489:31–44

    CAS  PubMed  Google Scholar 

  • Darley R, Morris A, Passas J et al (1993) Interactions between interferon γ and retinoic acid with transforming growth factor β in the induction of immune recognition molecules. Cancer Immunol Immunother 37:112–118

    CAS  PubMed  Google Scholar 

  • DeMasters BK, Markham N, Lillehei KO et al (1997) Differential telomerase expression in human primary intracranial tumors. Am J Clin Pathol 107:548–554

    CAS  PubMed  Google Scholar 

  • Dokka S, Toledo D, Shi X et al (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17:521–525

    CAS  PubMed  Google Scholar 

  • El Andaloussi A, Sonabend AM, Han Y et al (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54:526–535

    PubMed  Google Scholar 

  • Engelhard HH (1998) Antisense oligodeoxynucleotide technology:potential use for the treatment of malignant brain tumors. Cancer Control 5:163–170

    PubMed  Google Scholar 

  • Estibeiro P, Godfray J (2001) Antisense as a neuroscience tool and therapeutic agent. Trends Neurosci 24:S56–S62

    CAS  PubMed  Google Scholar 

  • Fakhrai H, Mantil JC, Liu L et al (2006) Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 13:1052–1060

    CAS  PubMed  Google Scholar 

  • Farman CA, Kornbrust DJ (2003) Oligodeoxynucleotide studies in primates:antisense and immune stimulatory indications. Toxicol Pathol 31(Suppl):119–122

    CAS  PubMed  Google Scholar 

  • Fattal E, Rojas J, Roblot-Treupel L et al (1991) Ampicillin-loaded liposomes and nanoparticles:comparison of drug loading, drug release and in vitro antimicrobial activity. J Microencapsul 8:29–36

    CAS  PubMed  Google Scholar 

  • Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337:387–388

    CAS  PubMed  Google Scholar 

  • Filion MC, Phillips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329:345–356

    CAS  PubMed  Google Scholar 

  • Fontana A, Constam DB, Frei K et al (1992) Modulation of the immune response by transforming growth factor beta. Int Arch Allergy Immunol 99:1–7

    CAS  PubMed  Google Scholar 

  • Froesch ER, Schmid C, Schwander J et al (1985) Actions of insulin-like growth factors. Annu Rev Physiol 47:443–467

    CAS  PubMed  Google Scholar 

  • Geary RS, Leeds JM, Henry SP et al (1997) Antisense oligonucleotide inhibitors for the treatment of cancer: 1. Pharmacokinetic properties of phosphorothioate oligodeoxynucleotides. Anticancer Drug Des 12:383–393

    CAS  PubMed  Google Scholar 

  • Geary RS, Yu RZ, Levin AA (2001) Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs 2:562–573

    CAS  PubMed  Google Scholar 

  • Geary RS, Yu RZ, Watanabe T et al (2003) Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2′-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. Drug Metab Dispos 31:1419–1428

    CAS  PubMed  Google Scholar 

  • Gelperina SE, Khalansky AS, Skidan IN et al (2002) Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett 126:131–141

    CAS  PubMed  Google Scholar 

  • Gewirtz AM (1997) Perturbing hematopoietic cell gene expression with oligodeoxynucleotides - research and clinicial applications. In: Schlingensiepen R, Brysch W, Schlingensiepen K-H (eds) Antisense – from technology to therapy. Blackwell, Berlin, Wien, pp 302–331

    Google Scholar 

  • Gewirtz AM, Stein CA, Glazer PM (1996) Facilitating oligonucleotide delivery: helping antisense deliver on its promise. Proc Natl Acad Sci USA 93:3161–3163

    CAS  PubMed  Google Scholar 

  • Grossman SA, Alavi JB, Supko JG et al (2005) Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-alpha delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro-Oncology 7:32–40

    CAS  PubMed  Google Scholar 

  • Hartmann G, Krug A, Waller-Fontaine K et al (1996) Oligodeoxynucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor: dependence on phosphorothioate modification and reversal by heparin. Mol Med 2:429–438

    CAS  PubMed  Google Scholar 

  • Hashizume R, Ozawa T, Gryaznov SM et al (2008) New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163. Neuro-Oncology 10:112–120

    CAS  PubMed  Google Scholar 

  • Hau P, Jachimczak P, Schlingensiepen R et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212

    CAS  PubMed  Google Scholar 

  • Henry SP, Geary RS, Yu R et al (2001) Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors? Curr Opin Investig Drugs 2:1444–1449

    CAS  PubMed  Google Scholar 

  • Hong X, Jiang F, Kalkanis SN et al (2007) Decrease of endogenous vascular endothelial growth factor may not affect glioma cell proliferation and invasion. J Exp Ther Oncol 6:219–229

    CAS  PubMed  Google Scholar 

  • Illum L (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56:3–17

    CAS  PubMed  Google Scholar 

  • Im SA, Gomez-Manzano C, Fueyo J et al (1999) Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res 59:895–900

    CAS  PubMed  Google Scholar 

  • Iwado E, Daido S, Kondo Y et al (2007) Combined effect of 2–5A-linked antisense against telomerase RNA and conventional therapies on human malignant glioma cells in vitro and in vivo. Int J Oncol 31:1087–1095

    CAS  PubMed  Google Scholar 

  • Jachimczak P, Bogdahn U, Schneider J et al (1993) The effect of transforming growtth factro-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78:944

    CAS  PubMed  Google Scholar 

  • Jachimczak P, Hessdörder B, Fabel-Schulte K et al (1996) Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65:332–337

    CAS  PubMed  Google Scholar 

  • Janicek MF, Angioli R, Unal AD et al (1997) p53 interference and growth inhibition in p53-mutant and overexpressing endometrial cancer cell lines. Gynecol Oncol 66:94–102

    CAS  PubMed  Google Scholar 

  • Jansen M, de Moor CH, Sussenbach JS et al (1995) Translational control of gene expression. Pediatr Res 37:681–686

    CAS  PubMed  Google Scholar 

  • Jiang Z, Zheng X, Rich KM (2003) Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem 84:273–281

    CAS  PubMed  Google Scholar 

  • Kehrl JH, Roberts AB, Wakefield LM et al (1986a) Transforming growth factor beta is an important immunomodulatory protein for human B-lymphocytes. J Immunol 137:3855–3860

    CAS  PubMed  Google Scholar 

  • Kehrl JH, Wakefield LM, Roberts AB et al (1986b) Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163:1037–1050

    CAS  PubMed  Google Scholar 

  • Khatsenko O, Morgan R, Truong L et al (2000) Absorption of antisense oligonucleotides in rat intestine: effect of chemistry and length. Antisense Nucleic Acid Drug Dev 10:35–44

    CAS  PubMed  Google Scholar 

  • Kitajima I, Shinohara T, Bilakovics J et al (1993) Ablation of transplanted HTLV-I tax-transformed tumors in mice by antisense inhibition of NF-kappa B. Science 259:1523

    CAS  PubMed  Google Scholar 

  • Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:249–258

    CAS  PubMed  Google Scholar 

  • Komata T, Kanzawa T, Kondo Y et al (2002) Telomerase as a therapeutic target for malignant gliomas. Oncogene 21:656–663

    CAS  PubMed  Google Scholar 

  • Kondo S, Tanaka Y, Kondo Y et al (1998) Antisense telomerase treatment: induction of two distinct pathways, apoptosis and differentiation. FASEB J 12:801–811

    CAS  PubMed  Google Scholar 

  • Kooijman R (2006) Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev 17:305–323

    CAS  PubMed  Google Scholar 

  • Kreuter J (1983) Evaluation of nanoparticles as drug-delivery systems I: preparation methods. Pharm Acta Helv 58:196–208

    CAS  Google Scholar 

  • Kreuter J, Ramge P, Petrov V et al (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416

    CAS  PubMed  Google Scholar 

  • Kreuter J, Shamenkov D, Petrov V et al (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10:317–325

    CAS  PubMed  Google Scholar 

  • Krieg AM (2004) Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Curr Oncol Rep 6:88–95

    PubMed  Google Scholar 

  • Krieg AM, Stein CA (1995) Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res Dev 5:241

    CAS  PubMed  Google Scholar 

  • Kuppner MC, Hamou MF, Sawamura Y et al (1989) Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg 71:211–217

    CAS  PubMed  Google Scholar 

  • Lakkaraju A, Dubinsky JM, Low WC et al (2001) Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem 276:32000–32007

    CAS  PubMed  Google Scholar 

  • Lambert G, Fattal E, Couvreur P (2001) Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 47:99–112

    CAS  PubMed  Google Scholar 

  • Laske DW, Morrison PF, Lieberman DM et al (1997) Chronic interstitial infusion of protein to primate brain: determination of drug distribution and clearance with single-photon emission computerized tomography imaging. J Neurosurg 87:586–594

    CAS  PubMed  Google Scholar 

  • Le Roith D (2003) The insulin-like growth factor system. Exp Diabesity Res 4:205–212

    PubMed  Google Scholar 

  • Li Y, Lu Z, Chen F et al (2005) Antisense bcl-2 transfection up-regulates anti-apoptotic and anti-oxidant thioredoxin in neuroblastoma cells. J Neurooncol 72:17–23

    CAS  PubMed  Google Scholar 

  • Liau LM, Fakhrai H, Black KL (1998) Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. Neurol Res 20:742–747

    CAS  PubMed  Google Scholar 

  • Libermann TA, Nusbaum HR, Razon N et al (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313:144–147

    CAS  PubMed  Google Scholar 

  • Lieberman DM, Laske DW, Morrison PF et al (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82:1021–1029

    CAS  PubMed  Google Scholar 

  • Liu Y, Wang Q, Kleinschmidt-DeMasters BK et al (2007) TGF-beta2 inhibition augments the effect of tumor vaccine and improves the survival of animals with pre-established brain tumors. J Neurooncol 81:149–162

    CAS  PubMed  Google Scholar 

  • Ly A, Bouchaud C, Henin D et al (2000) Expression of insulin-like growth factor-I in rat glioma cells is associated with change in both immunogenicity and apoptosis. Neurosci Lett 281:13–16

    CAS  PubMed  Google Scholar 

  • Maxwell M, Galanopoulos T, Neville-Golden J et al (1992) Effect of the expression of transforming growth factor-β2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg 76:799–804

    CAS  PubMed  Google Scholar 

  • Meng Y, Carpentier AF, Chen L et al (2005) Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer 116:992–997

    CAS  PubMed  Google Scholar 

  • Merkus FW, van den Berg MP (2007) Can nasal drug delivery bypass the blood-brain barrier?:questioning the direct transport theory. Drugs R D 8:133–144

    CAS  PubMed  Google Scholar 

  • Milligan JF, Matteucci MD, Martin JC (1993) Current concepts in antisense drug design. J Med Chem 36:1923–1937

    CAS  PubMed  Google Scholar 

  • Moreira JN, Santos A, Simoes S (2006) Bcl-2-targeted antisense therapy (Oblimersen sodium):towards clinical reality. Rev Recent Clin Trials 1:217–235

    CAS  PubMed  Google Scholar 

  • Nakada Y, Fattal E, Foulquier M et al (1996) Pharmacokinetics and biodistribution of oligonucleotides adsorbed onto poly(isobutylcynoacrylate)nanoparticles after intravenous administration in mice. Pharm Res 13:38–43

    CAS  PubMed  Google Scholar 

  • Ouagazzal AM, Tepper JM, Creese I (2001) Reducing gene expression in the brain via antisense methods. Current Protocols in Neuroscience, Chap 5, Unit 5.4

    Google Scholar 

  • Ozawa T, Gryaznov SM, Hu LJ et al (2004) Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro-Oncology 6:218–226

    CAS  PubMed  Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems:a comprehensive review. AAPS J 7:E61–E77

    CAS  PubMed  Google Scholar 

  • Pezeshki G, Schobitz B, Pohl T et al (1996) Intracerebroventricular administration of missense oligodeoxynucleotide induces interleukin-6 mRNA expression in brain and spleen of rats. Neurosci Lett 217:97–100

    CAS  PubMed  Google Scholar 

  • Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347

    CAS  PubMed  Google Scholar 

  • Pu P, Liu X, Liu A et al (2000) Inhibitory effect of antisense epidermal growth factor receptor RNA on the proliferation of rat C6 glioma cells in vitro and in vivo. J Neurosurg 92:132–139

    CAS  PubMed  Google Scholar 

  • Ramge P, Unger RE, Oltrogge JB et al (2000) Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 12:1931–1940

    CAS  PubMed  Google Scholar 

  • Rockwell P, O'Connor WJ, King K et al (1997) Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 94:6523–6528

    CAS  PubMed  Google Scholar 

  • Rudin CM, Kozloff M, Hoffman PC et al (2004) Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 22:1110–1117

    CAS  PubMed  Google Scholar 

  • Saijo Y, Uchiyama B, Abe T et al (1997) Contiguous four-guanosine sequence in c-myc antisense phosphorothioate oligonucleotides inhibits cell growth on human lung cancer cells: possible involvement of cell adhesion inhibition. Jpn J Cancer Res 88:26–33

    CAS  PubMed  Google Scholar 

  • Saleh M, Stacker SA, Wilks AF (1996) Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 56:393–401

    CAS  PubMed  Google Scholar 

  • Sasaki M, Wizigmann-Voos S, Risau W et al (1999) Retrovirus producer cells encoding antisense VEGF prolong survival of rats with intracranial GS9L gliomas. Int J Dev Neurosci 17:579–591

    CAS  PubMed  Google Scholar 

  • Schlegel J, Merdes A, Stumm G et al (1994) Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer 56:72–77

    CAS  PubMed  Google Scholar 

  • Schlingensiepen KH, Fischer-Blass B, Schmaus S et al (2008) Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 177:137–150

    CAS  PubMed  Google Scholar 

  • Schlingensiepen R, Goldbrunner M, Szyrach MN et al (2005) Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15:94–104

    CAS  PubMed  Google Scholar 

  • Schlingensiepen R, Schlingensiepen K-H (1997) Antisense oligodeoxynucleotides - highly specific tools for basic research and pharmacotherapy. In: Schlingensiepen R, Brysch W, Schlingensiepen K-H (eds) Antisense – from technology to therapy. Blackwell Wissenschaft, Berlin, Wien, pp 3–28

    Google Scholar 

  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al (2006) Targeted tumor therapy with the TGF-beta2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139

    CAS  PubMed  Google Scholar 

  • Schneider T, Becker A, Ringe K et al (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27

    CAS  PubMed  Google Scholar 

  • Schneider T, Sailer M, Ansorge S et al (2006) Increased concentrations of transforming growth factor beta1 and beta2 in the plasma of patients with glioblastoma. J Neurooncol 79:61–65

    CAS  PubMed  Google Scholar 

  • Shi N, Zhang Y, Zhu C et al (2001) Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 98:12754–12759

    CAS  PubMed  Google Scholar 

  • Sridhar SS, Hedley D, Siu LL (2005) Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4:677–685

    CAS  PubMed  Google Scholar 

  • Stein CA (1996) Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Trends Biotechnol 14:147–149

    CAS  PubMed  Google Scholar 

  • Steiniger SC, Kreuter J, Khalansky AS et al (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    CAS  PubMed  Google Scholar 

  • Surmacz E (2003) Growth factor receptors as therapeutic targets: strategies to inhibit the insulin-like growth factor I receptor. Oncogene 22:6589–6597

    CAS  PubMed  Google Scholar 

  • Trojan J, Cloix JF, Ardourel MY et al (2007) Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 145:795–811

    CAS  PubMed  Google Scholar 

  • Vavra M, Ali MJ, Kang EW et al (2004) Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery. Neuro-Oncology 6:104–112

    CAS  PubMed  Google Scholar 

  • Whitesell L, Geselowitz D, Chavany C et al (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc Natl Acad Sci USA 90:4665–4669

    CAS  PubMed  Google Scholar 

  • Wick W, Naumann U, Weller M (2006) Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 12:341–349

    CAS  PubMed  Google Scholar 

  • Wojcik WJ, Swoveland P, Zhang X et al (1996) Chronic intrathecal infusion of phosphorothioate or phosphodiester antisense oligonucleotides against cytokine responsive gene-2/IP-10 in experimental allergic encephalomyelitis of lewis rat. J Pharmacol Exp Ther 278:404–410

    CAS  PubMed  Google Scholar 

  • Wong ET, Brem S (2008) Antiangiogenesis treatment for glioblastoma multiforme: challenges and opportunities. J Natl Compr Canc Netw 6:515–522

    CAS  PubMed  Google Scholar 

  • Wu A, Oh S, Gharagozlou S et al (2007) In vivo vaccination with tumor cell lysate plus CpG oligodeoxynucleotides eradicates murine glioblastoma. J Immunother 30:789–797

    CAS  PubMed  Google Scholar 

  • Yaida Y, Nowak TS Jr. (1995) Distribution of phosphodiester and phosphorothioate oligonucleotides in rat brain after intraventricular and intrahippocampal administration determined by in situ hybridization. Regul Pept 59:193–199

    CAS  PubMed  Google Scholar 

  • Yoshida J, Mizuno M (2003) Clinical gene therapy for brain tumors. Liposomal delivery of anticancer molecule to glioma. J Neurooncol 65:261–267

    PubMed  Google Scholar 

  • You Y, Pu P, Huang Q et al (2006) Antisense telomerase RNA inhibits the growth of human glioma cells in vitro and in vivo. Int J Oncol 28:1225–1232

    CAS  PubMed  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75:280–284

    CAS  PubMed  Google Scholar 

  • Zhang R, Yan J, Shahinian H et al (1995) Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects. Clin Pharmacol Ther 58:44–53

    CAS  PubMed  Google Scholar 

  • Zhang Y, Jeong LH, Boado RJ et al (2002) Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 4:183–194

    PubMed  Google Scholar 

  • Zhu CJ, Li YB, Wong MC (2003) Expression of antisense bcl-2 cDNA abolishes tumorigenicity and enhances chemosensitivity of human malignant glioma cells. J Neurosci Res 74:60–66

    CAS  PubMed  Google Scholar 

  • Zobel HP, Kreuter J, Werner D et al (1997) Cationic polyhexylcyanoacrylate nanoparticles as carriers for antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 7:483–493

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, T. (2009). Brain Tumor Therapy with Antisense Oligonucleotides. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_19

Download citation

Publish with us

Policies and ethics