Skip to main content

Fat Cell Biochemistry and Physiology

  • Chapter
  • First Online:
Autologous Fat Transfer
  • 2188 Accesses

Abstract

The fat cell is a functioning hormonal unit of the body and affects other parts of the body as well as is affected by biochemical actions in the surrounding tissues and other parts of the body. A survey of the literature is presented in order to perhaps better understand what we may be affecting while doing autologous fat transfer. The review covers fat cell biochemistry and physiology, lipolysis, multilineage fat cells, obesity, diabetes, hypertension, hematopoiesis, inflammatory response, traumatic lipomas, and multiple symmetrical lipomatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knittle, J.L., Hirsch, J. Effect of early nutrition on the development of rat epididymal fat pads: cellularity and metabolism. J Clin Invest 1968;47(9):2091–2098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hirsch, J., Han, P.W. Cellularity of rat adipose tissue: effects of growth, starvation and obesity. J Lipid Res 1969;10(1):77–82

    PubMed  CAS  Google Scholar 

  3. Hirsch, J., Knittle, J.L. Cellularity of obese and nonobese human adipose tissue. Fed Proc 1970;29(4):1516–1521

    PubMed  CAS  Google Scholar 

  4. Salans, L.B., Cushman, S.W., Weismann, R.E. Studies of human adipose tissue: adipose cell size and number of nonobese and obese patients. J Clin Invest 1973;52(4):929–941

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Bjorntorp, P. Effects of age, sex and clinical conditions on adipose tissue cellularity in man. Metabolism 1974;23(11):1091–1102

    Article  PubMed  CAS  Google Scholar 

  6. Green, H., Meuth, M. An established pre-adipose cell line and its differentiation in culture. Cell 1974;3(2):127–133

    Article  PubMed  CAS  Google Scholar 

  7. Smahel, J. Adipose tissue in plastic surgery. Ann Plast Surg 1986;16(5):444–453

    Article  PubMed  CAS  Google Scholar 

  8. Herberg, L., Doppen, W., Major, E., Gries, F.A. Dietary-induced hypertrophic-hyperplastic obesity in mice. J Lipid Res 1974;15(6):580–585

    PubMed  CAS  Google Scholar 

  9. Wassermann, F. Die fettorgane des menschen: entwicklung, bau und systematische stellung des sogenannten fettgewebes. Z Zellforsch Mikr Anat 1925;3:235

    Article  Google Scholar 

  10. Hausberger, F.X. Quantitative studies on the development of autotransplants of immature adipose tissue of rats. Anat Rec 1955;122(4):507–515

    Article  PubMed  CAS  Google Scholar 

  11. Ramsay, T.G. Fat cells. Endocrinol Metab Clin North Am 1996;25(4):847–870

    Article  PubMed  CAS  Google Scholar 

  12. Atanassova, P. Immunohistochemical expression of S-100 protein in human embryonal fat cells. Cells Tissues Organ 2001;169(4):355–360

    Article  CAS  Google Scholar 

  13. Ailhaud, G., Amri, E., Bardon, S., Barcellini-Couget, S., Bertrand, B., Catalioto, R.M., Dani, C., Dijan, P., Doglio, A., Forest, C., et al. The adipocyte: relationships between proliferation and adipose cell differentiation. Am Rev Respir Dis 1990;142(6 Pt):S57–S59

    Article  Google Scholar 

  14. Lau, D.C., Shillabeer, G., Wong, K.L., Tough, S.C., Russell, J.C. Influence of paracrine factors on preadipocyte replication and differentiation. Int J Obes 1990;14(Suppl 3):193–201

    PubMed  Google Scholar 

  15. Uchida, E., Shimokawa, S., Nishida, Y, Takasu, H., Ikehara, N., Tomita, K., Tanaka, A., Morikawa, N. An active site of growth hormone for eliciting the differentiation of preadipose 3T3-F442A cells to adipose cells. Biochem Biophys Res Commun 1990;172(1):357–363

    Article  PubMed  CAS  Google Scholar 

  16. Kawada, T., Aoki, N., Kamei, Y., Maeshige, K., Nishiu, S., Sugimoto, E. Comparative investigation of vitamins and their analogs on terminal differentiation from preadipocytes to adipocytes of 3T3-LI cells. Comp Biochem Physiol A 1990;96(2):323–326

    Article  PubMed  CAS  Google Scholar 

  17. Gregoire, F., Genart, C., Hauser, N., Remacle, C. Gluco­corticoids induce a drastic inhibition of proliferation and stimulate differentiation of adult rat fat cells precursors. Exp Cell Res 1991;196(2):270–278

    Article  PubMed  CAS  Google Scholar 

  18. Carraro, R., Li, Z.H., Johnson, J.F., Jr., Gregerman, R.I. Islets of preadipocytes highly committed to differentiation in cultures of adherent rat adipocytes: light and electron-microscope observations. Cell Tissue Res 1991;264(2):243–251

    Article  PubMed  CAS  Google Scholar 

  19. Vikman, K., Carlsson, B., Billig, H., Eden, S. Expression and regulation of growth hormone (GH) receptor messenger ribonucleic (mRNA) acid in rat adipose tissue, adipocytes and adipocyte precursor cells. Endocrinology 1991;129(3):1155–1161

    Article  PubMed  CAS  Google Scholar 

  20. Benito, M., Porras, A., Nebreda, A., Santos, E. Differentiation of 3T3-LI fibroblasts to adipocytes induced by transfection of ras oncogenes. Science 1991;253(5019):565–568

    Article  PubMed  CAS  Google Scholar 

  21. Serrero, G., Mills, D. Decrease in transforming growth ­factor beta-1 binding during differentiation of rat adipocyte precur­sors in primary culture. Cell Growth Differ 1991;2(3):173–178

    PubMed  CAS  Google Scholar 

  22. Catalioto, R.M., Gaillard, D., Maclouf, J., Ailhaud, G., Negrel, R. Autocrine control of adipose cell differentiation by prostacyclin and PGF2-alpha. Biochim Biophys Acta 1991;1091(3):364–369

    Article  PubMed  CAS  Google Scholar 

  23. Li, Z.H., Carraro, R., Gregerman, R.I., Lau, D.C. Adipocyte differentiation factor (ADF): a protein secreted by mature fat cells that induces predipocyte differentiation in culture. Cell Biol Int 1998;22(4):253–270

    Article  PubMed  CAS  Google Scholar 

  24. Yokota, T., Meka, C.S. Kouro, T., Medina, K.L., Igarashi, H., Takahashi, M., Oritani,K., Funahashi, T., Tomiyama, Y., Matsuzawa, Y., Kincade, P.W. Adiponectin: a fat cell product, influences the earliest lymphocyte precursors in bone marrow culture by activation of the cyclooxygenase-prostaglandin pathway in stromal cells. J Immunol 2003;171(10): 5091–5099

    PubMed  CAS  Google Scholar 

  25. Raclot, T. Selective mobilization of fatty acids from white fat cells: evidence for a relationship to the polarity of triacylglycerols. Biochem J 1997;322(Pt 2):483–489

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Kajimoto, K., Terada, H., Baba, Y., Shinohara, Y. Essential role of citrate export from mitochondria at early differentiation stage of 3T3-L1 cells for their effective differentiation into fat cells, as revealed by studies using specific inhibitors of mitochondrial di- and tricarboxylate carriers. Mol Genet Metab 2005;85(1):46–53

    Article  PubMed  CAS  Google Scholar 

  27. Ailhaud, G. Cellular and secreted lipoprotein lipase revisited. Clin Biochem 1990;23(5):343–347

    Article  PubMed  CAS  Google Scholar 

  28. Peterfy, M., Phan, J., Reue, K. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J Biol Chem 2005:280(38):32883–32889

    Article  PubMed  CAS  Google Scholar 

  29. Phan, J., Peterfly, M., Reue, K. Biphasic expression of lipin suggests dual roles in adipocyte development. Drug News Perspect 2005;18(1):5–11

    Article  PubMed  CAS  Google Scholar 

  30. Sengenes, C., Zakaroff-Girard, A., Moulin, A., Berlan, M., Bouloumie, A., Lafontan, M., Galitzky, J. Natriuretic peptide-dependent lipolysis is a primate specificity. Am J Physiol Regul Intgr Comp Physiol 2002;283(1):R257–R265

    Google Scholar 

  31. Sengenes, C., Moro, C., Galitzky, J., Merlan, M., Lafontan, M. Natriuretic peptides: a new lipolytic pathway in human fat cells. Med Sci (Paris) 2005;21(1):61–65

    Article  Google Scholar 

  32. Lafontan, M., Bousquet-Melon, A., Galitzky, J., Barbe, P., Carpene, C., Langin, D., Berlan, M., Valet, P., Castan, I., Bouloumie, A., et al. Adrenergic receptors and fat cells: differential recruitment by physiological amines and homologous regulation. Obes Res 1995;3(Suppl 4):507S–514S

    Article  PubMed  CAS  Google Scholar 

  33. Van Harmelen, V., Reynisdottir, S., Cianflone, K., Degerman, E., Hofstedt, J., Nilsell, K., Sniderman, A., Arner, P. Mecha­nisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J Biol Chem 1999;274(26):18243–18251

    Article  PubMed  Google Scholar 

  34. Ryden, M., Dicker, A., van Harmelen, V., Hauner, H., Brunnberg, M., Perbeck, L., Lonnqvist, F., Arner, P. Mapping of early signaling events in tumor necrosis factor-alpha-mediated lipolysis in human fat cells. J Biol Chem 2002;277(2):1085–1091

    Article  PubMed  CAS  Google Scholar 

  35. Prins, J.B., Niesler, C.M., Winterford, C.M., Bright, N.A., Siddle, K., O’Rahilly, S., Walker, N.I., Cameron, D.P. Tumor necrosis factor-α induses apoptosis of human adipose cells. Diabetes 1997;46:1939–1944

    Article  PubMed  CAS  Google Scholar 

  36. Petruschke, T., Hauner, H. Tumor necrosis factor-α prevents the differentiation of human adipocyte precursor cells and causes delipidation of newly developed fat cells. J Clin Endocrinol Metab 1993;76(3):742–747

    Article  PubMed  CAS  Google Scholar 

  37. Ryden, M., Faulds, G., Hoffstedt, J., Wennlund, A., Arner, P. Effect of the (C825T) Gbeta(3) polymorphism on adrenoceptor-mediated lipolysis in human fat cells. Diabetes 2002;51(5):1601–1608

    Article  PubMed  CAS  Google Scholar 

  38. Large, V., Arner, P., Reynisdottir, S., Grober, J., van Harmelen, V., Holm, C., Langin, D. Hormone-sensitive lipase expression and activity in relation to lipolysis in human fat cells. Lipid Res 1998;39(80):1688–1695

    CAS  Google Scholar 

  39. Large, V., Reynisdottir, S., Langin, D., Fredby, K., ­Klanne­mark, M., Holm, C., Arner, P. Decreased expres­sion and function of adipocyte hormone-sensitive lipase in ­subcutaneous fat cells of obese subjects. J Lipid Res 1999; 40(11):2059–2066

    PubMed  CAS  Google Scholar 

  40. Galitzky, J., Langin, D., Verwaerde, P., Montastrue, J.L., Lafontan, M., Berlan, M. Lipolytic effects of conventional beta 3-adrenoceptor agonists and of CGP 12,177in rat and human fat cells: preliminary pharmacological evidence for a putative beta 4-adrenoceptor. Br J Pharmacol 1997;122(6):1244–1250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Portillo, M.P., Rocandio, A.M., Garcia-Calonge, M.A., Diaz, E., Campo, E., Martinez-Blazquez, C. Errasti, J., del Barrio, A.S. Lipolytic effects of beta1, beta2, and beta3-adrenergic agonists in isolated human fat cells from omental and retroperitoneal adipose tissues. Rev Esp Fisiol 1995;51(4):193–200

    PubMed  CAS  Google Scholar 

  42. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., Hedrick, M.H. Multi­lineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7(2):211–228

    Article  PubMed  CAS  Google Scholar 

  43. Schor, A.M., Allen, T.D., Canfield, A.E., Sloan, P., Schor, S.L. Pericyte derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 1990;97(Pt 3):449–461

    PubMed  Google Scholar 

  44. Doherty, M.J., Ashton, B.A., Walsh, S., Beresford, J.N., Grant, M.E., Canfield, A.E. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998;13(5):828–838

    Article  PubMed  CAS  Google Scholar 

  45. Diefenderfer, D.L., Brighton, C.T. Microvascular pericytes express aggrecan message which is regulated by BMP2. Biochem Biophys Res Commun 2000;269(1):172–178

    Article  PubMed  CAS  Google Scholar 

  46. Miyazaki, T., Kitagawa, Y., Toriyama, K., Kobori, M., Torii, S. Isolation of two human fibroblastic cell populations with multiple but distinct potential of mesenchymal differentiation by ceiling culture of mature fat cells from subcutaneous adipose tissue. Differentiation 2005;73(2–3):69–78

    Article  PubMed  CAS  Google Scholar 

  47. Pausova, Z. From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr Opin Nephrol Hypertens 2006;15(2):173–178

    Article  PubMed  Google Scholar 

  48. Lofgren, P., Hoffstedt, J., Naslund, E., Wiren, M., Arner, P. Prospective and controlled studies of the actions of insulin and catecholamine in fat cells of obese women following weight reduction. Diabetologia 2005;48(11):2234–2242

    Article  Google Scholar 

  49. Ehrhart-Bornstein, M., Arakelyan, K., Krug, A.W., Scher­baum, W.A., Bornstein, S.R. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr Res 2004;30(4):865–870

    Article  PubMed  CAS  Google Scholar 

  50. Gottschling-Zeller, H., Birgel, M., Rohrig, K., Hauner, H. Effect of tumor necrosis factor alpha and transforming growth factor beta 1 on plasminogen activator inhibitor-1 secretion from subcutaneous and omental human fat cells in suspension culture. Metabolism 2000;49(5):666–671

    Article  PubMed  CAS  Google Scholar 

  51. DeFronzo, R.A. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int J Clin Pract Suppl 2004;(143):9–21

    Google Scholar 

  52. Dietze-Schroeder, D., Sell, H., Uhlig, M., Koenen, M., Eckel, J. Autocrine action of adiponectin on human fat cells prevents the release of insulin-inducing factors. Diabetes 2005;54(7):2003–2011

    Article  PubMed  CAS  Google Scholar 

  53. Lafontan, M. Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 2005;45:119–146

    Article  PubMed  CAS  Google Scholar 

  54. Noushmehr, H., D’Amico, E., Farilla, L., Hui, H., Wawrowsky, K.A., Miynarski, W., Doria, A., Abumrad, N.A., Perfetti, R. Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human beta-cells and mediates fatty acid effects on insulin secretion. Diabetes 2005;54 (2):472–481

    Article  PubMed  CAS  Google Scholar 

  55. Sweeney, G., Garg, R.R., Ceddia, R.B., Li, D., Ishiki, M., Somwar, R., Foster, L.J., Neilsen, P.O., Prestwich, G.D., Rudich, A., Klip, A. Intracellular delivery of phosphatidylinositol (3,4,5)-triphosphate causes incorporation of glucose transporter 4 into plasma membrane of muscle and fat cells without increasing glucose uptake. J Biol Chem 2004;279(31):32233–32242

    Article  PubMed  CAS  Google Scholar 

  56. Rudich, A., Konrad, D., Torok, D., Ben-Romano, R., Huang, C., Niu, W., Garg, R.R., Wijesekara, N., Germinario, R.J., Bilan, P.J., Klip, A. Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia 2003;46(5):649–658

    PubMed  CAS  Google Scholar 

  57. Buren, J., Lindmark, S., Renstrom, F., Eriksson, J.W. In vitro reversal of hyperglycemia normalizes insulin action in fat cells from type 2 diabetes patients: is cellular insulin resistance caused by glucotoxicity in vivo? Metabolism 2003;52(2):239–245

    Article  PubMed  CAS  Google Scholar 

  58. Hoffstedt, J., Ryden, M., Lofgren, P., Orho-Melander, M., Groop, L., Arner, P. Polymorphism in the Calpain 10 gene influences metabolism in human fat cells. Diabetologia 2002;45(2):278–282

    Article  Google Scholar 

  59. Smith U., Axelsen, M., Carvalho, E., Eliasson, B., Jansson, P.A., Wesslau, C. Insulin signaling and action in fat cells: association with insulin resistance and type 2 diabetes. Ann N Y Acad Sci 1999;892:119–126

    Article  PubMed  CAS  Google Scholar 

  60. Skurk, T., van Harmelen, V., Blum, W.F., Hauner, H. Angio­tensin II promotes leptin production in cultured human fat cells by an ERK1/2dependent pathway. Obes Res 2005;13(6): 969–973

    Article  PubMed  CAS  Google Scholar 

  61. Hoffstedt, J., Reynisdottir, S., Lonnqvist, F. Systolic blood pressure is related to catecholamine sensitivity in subcutaneous abdominal fat cells. Obes Res 1996;4(1):21–26

    Article  PubMed  CAS  Google Scholar 

  62. Belaid, Z., Hubint, F., Humblet, C., Boniver, J., Nusgens, B., Defresne, M.P. Differential expression of vascular ­endothelial growth factor and its receptors in hematopoietic and fatty bone marrow: evidence that neuropilin-1 is produced by fat cells. Haematologica 2005;90(3):400–401

    PubMed  CAS  Google Scholar 

  63. Ruan, H., Zarnowski, M.J., Cushman, S.W., Lodish, H.F. Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and down-regulates adipocyte genes. J Biol Chem 2003;278(48):47585–47593

    Article  PubMed  CAS  Google Scholar 

  64. Turc-Carel, C., Dal Cin, P., Boghosian, L., Leong, S.P., Sandberg, A.A. Breakpoints in benign lipomas may be at 12q13 or 12q14. Cancer Genet Cytogenet 1988;36(1):131–135

    Article  PubMed  CAS  Google Scholar 

  65. Grandi, E., Trisolini, M.P. Tumors of the adipose tissue during 10 years of diagnostic activities (1979–1988). Pathologica 1990;82(1079):217–256

    PubMed  CAS  Google Scholar 

  66. Enzinger, F., Weiss, S. Soft Tissue Tumors. St. Louis, Mosby, 1983

    Google Scholar 

  67. David, L.R., De Franzo, A., Marks, M., Argenta, L.C. Post­traumatic pseudolipoma. J Trauma 1996;40(3):396–400

    Article  PubMed  CAS  Google Scholar 

  68. Brooke, R.I., MacGregor, A.J. Traumatic pseudolipoma of the buccal mucosa. Oral Surg Oral Med Oral Pathol 1969;28(2):223–225

    Article  PubMed  CAS  Google Scholar 

  69. Meggitt, B.F., Wilson, J.N. The battered buttock syndrome-fat fractures. Br J Surg 1972;59(3):165–169

    Article  PubMed  CAS  Google Scholar 

  70. Herbert, D.C., DeGeus, J. Post-traumatic lipomas of the abdominal wall. Br J Plast Surg 1975;28(4):303–306

    Article  PubMed  CAS  Google Scholar 

  71. Rozner, I., Isaacs, G.W. The traumatic pseudolipoma. Austr N Z J Surg 1977;47(6):779–782

    Article  CAS  Google Scholar 

  72. Penoff, J.H. Traumatic lipomas/pseudolipomas. J Trauma 1982;22(1):63–65

    Article  PubMed  CAS  Google Scholar 

  73. Dodenhoff, T.T. Trauma induced saddle bag: case report. Lipoplasty Newslett 1988;5:55

    Google Scholar 

  74. Elsahy, N.I. Posttraumatic fatty deformities. Eur J Plast Surg 1989;12:208

    Article  Google Scholar 

  75. Cormenzana Olaso, P.S., Martinez Florez, A.E., Cecilia Gomez, J.A. Lipodistrofia post-traumatica. Cir Plast Ibero-Latinoamer 1992;18:47

    Google Scholar 

  76. Signorini, M., Campiglio, G.L. Posttraumatic lipomas: where do they really come from? Plast Reconstr Surg 1998;101(3):699–705

    Article  PubMed  CAS  Google Scholar 

  77. Armstrong, S.J., Watt, I. Lipoma arborescens of the knee. Br J Radiol 1989;62(734):178–180

    Article  PubMed  CAS  Google Scholar 

  78. Nisoli, E., Regianini, L., Bulbarelli, A., Busetto, L., Coin, A., Enzi, G., Carruba, M.O. Multiple symmetrical lipomatosis (MSL) may be the consequence of defective noradrenergic modulation of proliferation and differentiation of brown fat cells. J Pathol 2002;198(3):378–387.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin A. Shiffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shiffman, M.A. (2010). Fat Cell Biochemistry and Physiology. In: Shiffman, M. (eds) Autologous Fat Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00473-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00473-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00472-8

  • Online ISBN: 978-3-642-00473-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics