The Weierstrass Canonical Form of a Regular Matrix Pencil: Numerical Issues and Computational Techniques

  • Grigorios Kalogeropoulos
  • Marilena Mitrouli
  • Athanasios Pantelous
  • Dimitrios Triantafyllou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)


In the present paper, we study the derivation of the Weierstrass Canonical Form (WCF) of a regular matrix pencil. In order to compute the WCF, we use two important computational tools: a) the QZ algorithm to specify the required root range of the pencil and b) the updating technique to compute the index of annihilation. The proposed updating technique takes advantages of the already computed rank of the sequences of matrices that appears during our procedure reducing significantly the required floating-point operations.

The algorithm is implemented in a numerical stable manner, giving efficient results. Error analysis and the required complexity of the algorithm are included.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, C.T.: Linear System Theory and Design, pp. 546–550. CBS College Publishing (1984)Google Scholar
  2. 2.
    Datta, B.N.: Numerical Linear Algebra and Applications, 2nd edn. Brooks/Cole Publishing Company, United States of America (1995)Google Scholar
  3. 3.
    Gantmacher, R.F.: The theory of matrices, Chelsea, New York., U.S.A, vol. I, II (1959)Google Scholar
  4. 4.
    Kalogeropoulos, G.: Matrix Pencils and linear systems theory. PhD thesis. Control Engineering Centre, City University, London (1985)Google Scholar
  5. 5.
    Kalogeropoulos, G., Mitrouli, M.: On the computation of the Weierstrass Canonical form of a Regular Matrix Pencil. Control and Computers 20(3), 61–67 (1992)Google Scholar
  6. 6.
    Kalogeropoulos, G.I., Pantelous, A.A.: Can be linear difference descriptor systems appeared in insurance? In: Proceedings of the 7th International Conference APLIMAT 2008, Bratislava, Slovakia, pp. 467–478 (2008)Google Scholar
  7. 7.
    Karcanias, N., Kalogeropoulos, G.: On the Segre, Weyl characteristics of right (left) regular pencils. International Journal of Control 44, 991–1015 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Karcanias, N., Kalogeropoulos, G.: The prime and generalized nullspaces of right regular pencils. Circuits Systems Signal Processes 14(4), 495–524 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Leontief, W.: Input-Output Economics, 2nd edn. Oxford Univ. Press, N. Y (1986)Google Scholar
  10. 10.
    Van Huffel, S., Vandewalle, J.: An efficient and reliable algorithm for computing the singular subspace of a matrix, associated with its smallest singular values. Journal of Computers and Applied Mathematics 19, 313–330 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Van Huffel, S.: Partial singular value decomposition algorithm. Journal of Computers and Applied Mathematics 33, 105–112 (1990)CrossRefzbMATHGoogle Scholar
  12. 12.
    Yalamov, P.Y., Mitrouli, M.: A fast Algorithm for Index Annihilation Computations. Journal of Computers and Applied Mathematics 108, 99–111 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Grigorios Kalogeropoulos
    • 1
  • Marilena Mitrouli
    • 1
  • Athanasios Pantelous
    • 1
  • Dimitrios Triantafyllou
    • 1
  1. 1.Department of MathematicsUniversity of AthensAthensGreece

Personalised recommendations