Advertisement

Numerical Integration with Complex Jacobi Weight Function

  • Gradimir V. Milovanović
  • Aleksandar S. Cvetković
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)

Abstract

In this paper we study the numerical integration on ( − 1,1) with respect to the Jacobi weight function (1 − x) α (1 + x) β , where α and β are complex parameters. The problem arises in some applications of computational models in quantum mechanics. We discuss two methods for integration. One is suitable for integration of analytic functions and the other is applicable to the general Riemann integrable functions.

Keywords

Orthogonal Polynomial Quadrature Rule Jacobi Polynomial Jacobi Operator Pade Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. In: Encyclopedia of mathematics and its applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Beckermann, B.: Complex Jacobi matrices. J. Comput. Appl. Math. 127, 17–65 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)zbMATHGoogle Scholar
  4. 4.
    Cvetković, A.S., Milovanović, G.V.: The Mathematica Package OrthogonalPolynomials. Facta Univ. Ser. Math. Inform. 19, 17–36 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gautschi, W.: Algorithm 726: ORTHPOL – A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 10, 21–62 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Clarendon Press, Oxford (2004)zbMATHGoogle Scholar
  7. 7.
    Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rule. Math. Comput. 23, 221–230 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Heins, M.: Complex Function Theory. Academic Press, London (1968)zbMATHGoogle Scholar
  9. 9.
    Magnus, A.P.: Toeplitz matrix techniques and convergence of complex weight Pade approximation. J. Comput. Appl. Math. 19, 23–38 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Mancev, I.: Continuum distorted wave - Born initial state (CDW - BIS) model for single charge exchange. J. Comput. Meth. Sci. & Engineer. 5, 73–89 (2005)zbMATHGoogle Scholar
  11. 11.
    Milovanović, G.V.: Numerical Analysis, Part I. Naučna Knjiga, Belgrade (Serbian) (1991)Google Scholar
  12. 12.
    Milovanović, G.V., Cvetković, A.S.: Complex Jacobi matrices and quadrature rules. Filomat. 17, 117–134 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mukherjee, S.C., Roy, K., Sil, N.C.: Evaluation of the Coulomb integrals for scaterring problems. Phys. Review 12(4) (1975)Google Scholar
  14. 14.
    Koekoek, R., Swarttouw, R.P.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report 98–17, TU Delft (1998)Google Scholar
  15. 15.
    Sloan, I.H., Smith, W.E.: Properties of interpolatory product integration rules. SIAM J. Numer. Anal. 19, 427–442 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gradimir V. Milovanović
    • 1
  • Aleksandar S. Cvetković
    • 2
  1. 1.Faculty of Computer SciencesMegatrend University BelgradeNovi BeogradSerbia
  2. 2.Faculty of Sciences and MathematicsUniversity of NišNišSerbia

Personalised recommendations