Optimal Order FEM for a Coupled Eigenvalue Problem on 2D Overlapping Domains

  • A. B. Andreev
  • M. R. Racheva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)


In this paper we present a numerical approach to a nonstandard second-order elliptic eigenvalue problem defined on two overlapping rectangular domains with a nonlocal (integral) boundary condition. Usually, for this class of problems error estimates are suboptimal. By introducing suitable degrees of freedom and a corresponding interpolation operator we derive optimal order finite element approximation. Numerical results illustrate the efficiency of the proposed method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreev, A.B., Racheva, M.R.: Optimal order finite element method for coupled eigenvalue problem on overlappingdomains. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 637–644. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    De Shepper, H.: Finite element analysis of a coupling eigenvalue problem on overlapping domains. J. Comput. Appl. Math. 132, 141–153 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Huang, Y.Q., Xu, J.C.: A conforming finite element method for overlapping and nonmatching grids. Math. Comp. 72(243), 1057–1066 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cai, X.C., Dryja, M., Sarkis, M.: Overlapping nonmatchinggrids mortar element methods for elliptic problems. SIAM J. Numer. Anal. 36(2), 581–606 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Raviart, P.A., Thomas, J.M.: Introduction a l’Analyse Numerique des Equations aux Derivees Partielles. Masson Paris (1983)Google Scholar
  6. 6.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  7. 7.
    Zienkiewich, O.C., Zhu, J.Z.: The superconvergence patch-recovery (SPR) and adaptive finite element refinement. Comp. Methods Appl. Mech. Eng. 101, 207–224 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. B. Andreev
    • 1
  • M. R. Racheva
    • 2
  1. 1.Department of InformaticsTechnical University of GabrovoGabrovoBulgaria
  2. 2.Department of MathematicsTechnical University of GabrovoGabrovoBulgaria

Personalised recommendations