Temporally-Periodic Solitons of the Parametrically Driven Damped Nonlinear Schrödinger Equation

  • E. V. Zemlyanaya
  • I. V. Barashenkov
  • N. V. Alexeeva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5434)


Time-periodic solitons of the parametrically driven damped nonlinear Schrödinger equation are determined as solutions of the boundary-value problem on a two-dimensional domain. We classify stability and bifurcations of single and double-periodic solutions.


Periodic Solution Hopf Bifurcation Direct Numerical Simulation Bifurcation Diagram Floquet Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elphick, C., Meron, E.: Localized structures in surface waves. Phys. Rev. A 40, 3226–3229 (1989)CrossRefGoogle Scholar
  2. 2.
    Chen, X.N., Wei, R.J.: Dynamic behaviour of a nonpropagating soliton under a periodically modulated oscillation. J. Fluid Mech. 259, 291–303 (1994)CrossRefGoogle Scholar
  3. 3.
    Miao, G., Wei, R.: Parametrically excited hydrodynamic solitons. Phys. Rev. E 59, 4075–4078 (1999)CrossRefGoogle Scholar
  4. 4.
    Mecozzi, A., et al.: Long-term storage of a soliton bit stream by use of phase-sensitive amplification. Opt. Lett. 19, 2050–2052 (1994)CrossRefGoogle Scholar
  5. 5.
    Longhi, S.: Ultrashort-pulse generation in degenerate optical parametric oscillators. Opt. Lett. 20, 695–697 (1995)CrossRefGoogle Scholar
  6. 6.
    Sánchez-Morcillo, V.J., et al.: Vectorial Kerr-cavity solitons. Opt. Lett. 25, 957–959 (2000)CrossRefGoogle Scholar
  7. 7.
    Barashenkov, I.V., Bogdan, M.M., Korobov, V.I.: Stability Diagram of the Phase-Locked Solitons in the Parametrically Driven, Damped Non- Linear Schrodinger Equation. Europhys. Lett. 15, 113–118 (1991)CrossRefGoogle Scholar
  8. 8.
    Denardo, B., et al.: Observations of localized structures in nonlinear lattices – domain walls and kinks. Phys. Rev. Lett. 68, 1730–1733 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Alexeeva, N.V., Barashenkov, I.V., Tsironis, G.P.: Impurity-induced stabilisation of solitons in arrays of parametrically driven nonlinear oscillators. Phys. Rev. Lett. 84, 3053–3056 (2000)CrossRefGoogle Scholar
  10. 10.
    Chen, W., Hu, B., Zhang, H.: Interactions between impurities and nonlinear waves in a driven nonlinear pendulum chain. Phys. Rev. B 65, 134302(1-11) (2002)Google Scholar
  11. 11.
    Alexeeva, N.V., Barashenkov, I.V., Pelinovsky, D.E.: Dynamics of the parametrically driven NLS solitons beyond the onset of the oscillatory instability. Nonlinearity 12, 103–140 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bondila, M., Barashenkov, I.V., Bogdan, M.M.: Topography of attractors of the parametrically driven damped nonlinear Schrödinger equation. Physica D 87, 314–320 (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Barashenkov, I.V., Zemlyanaya, E.V.: Stable complexes of parametrically driven, damped Nonlinear Schrödinger solitons. Phys. Rev. Lett. 83, 2568–2571 (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zemlyanaya, E.V., Barashenkov, I.V.: Numerical study of the multisoliton complexes in the damped-driven NLS. Math. Modelling 16(3), 3–14 (2004)zbMATHGoogle Scholar
  15. 15.
    Barashenkov, I.V., Zemlyanaya, E.V., Bär, M.: Travelling solitons in the parametrically driven nonlinear Schrödinger equation. Phys. Rev. E. 64, 016603(1-12) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. V. Zemlyanaya
    • 1
  • I. V. Barashenkov
    • 2
  • N. V. Alexeeva
    • 2
  1. 1.Laboratory for Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Department of MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations