Skip to main content

Zur Funktion des Gehirns: Die Sehwelt

  • Chapter
Tier- und Humanphysiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

Der Funktion des Gehirns nachzugehen, ist wohl die größte Herausforderung, der sich die Naturwissenschaft heute und in Zukunft stellt. Das Gehirn des Menschen soll nach einer vielzitierten Schätzung 100 Mrd. Nervenzellen enthalten, wobei die einzelne Nervenzelle mit vielleicht 100 bis 10 000 anderen Neuronen synaptischen Kontakt hat. Die Leitungsbahnen summieren sich, so wird geschätzt, auf 750 000 km, der doppelten Entfernun zum Mond. Die Nervenzellen werden begleitet von einigen Milliarden Gliazellen, die die Funktionen der Neuronen unterstützen und modifizieren. Es ist schlechterdings unmöglich, die Funktionen des Gehirns bis in alle Details aufzuschlüsseln. Das wäre vielleicht auch gar nicht sonderlich interessant. Interessanter sind die übergeordneten Strategien der Datenauswertung und die Systemeigenschaften der multizellulären Netzwerke. Wir beschränken uns auf wenige Hinweise im Bereich des Sehens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatuur

  • Dudel J, Menzel R, Schmidt R (2001, 2005) Neurowissenschaft. Vom Molekül zur Kognition, 2.Aufl. 2001, Nachdruck 2005. Springer, Berlin

    Google Scholar 

  • Gazzinga MS, Ivry RB, Mangun GR (2008) Cognitive neuroscience: the biology of the mind von Michael cognitive neuroscience. Norton & Co, New York

    Google Scholar 

Artikel: Visuelle Datenverarbeitung

  • Adams DL et al (2007) Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci 27(39): 10391–10403

    Article  PubMed  CAS  Google Scholar 

  • Mecklinger A, Müller NG (1996): Dissociations in the processing of „what" and „where" information in working memory: an eventrelated potential analysis. J Cogn Neurosci 8(5): 453–473

    Article  Google Scholar 

  • Müller NG, Kleinschmidt A (2003) Dynamic interaction of object- and space-based attention in retinotopic visual areas. J Neurosci 23: 9812–9816

    PubMed  Google Scholar 

  • Müller NG, Kleinschmidt A (2007) Temporal dynamics of the attentional spotlight: neuronal correlates of attentional capture and inhibition of return in early visual cortex. J Cogn Neurosci 19(4): 587–593

    Article  PubMed  Google Scholar 

  • Nomura EM, Reber PJ (2008) A review of medial temporal lobe and caudate contributions to visual category learning. Neurosci Biobehav Rev 32(2): 279–291

    Article  PubMed  CAS  Google Scholar 

  • Op de Beeck HP et al (2008) Fine-scale spatial organization of face and object selectivity in the temporal lobe: do functional magnetic resonance imaging, optical imaging, and electrophysiology agree? J Neurosci 28(46): 11796–11801

    Article  PubMed  CAS  Google Scholar 

  • Pollen DA (2008) Fundamental requirements for primary visual perception. Cereb Cortex 18(9): 1991–1998

    Article  PubMed  Google Scholar 

  • Shapley R et al (2007) The dynamics of visual responses in the primary visual cortex. Prog Brain Res 165: 21–32

    Article  PubMed  Google Scholar 

  • Tsao DY, Livingstone MS (2008) Mechanisms of face perception. Annu Rev Neurosci 31: 411–437

    Article  PubMed  CAS  Google Scholar 

  • Wandell BA et al (2007) Visual field maps in human cortex. Neuron 56(2): 366–383

    Article  PubMed  CAS  Google Scholar 

  • Westheimer G (2007) The ON-OFF dichotomy in visual processing: from receptors to perception. Prog Retin Eye Res 26(6): 636–648

    Article  PubMed  CAS  Google Scholar 

Farbwahrnehmung je nach Umgebung, Optische Illusionen

  • Andrews T, Lotto RB (2004) Perceptual rivalry is contingent on the perceptual meaning of Stimuli. Curr Biol 14: 418–423

    Article  PubMed  CAS  Google Scholar 

  • Bach M, Poloschek CM (2006) Optical illusions. Adv Clin Neurosci Rehab (ACNR) 6: 20–21

    Google Scholar 

  • Haynes J, Lotto RB, Rees G (2004) Responses of human visual cortex to uniform surfaces measured with fMRI. Proc Natl Acad Sci USA 101: 4286–4291

    Article  PubMed  CAS  Google Scholar 

  • Lotto RB, Purves D (1999) From the cover: the effects of color on brightness. Nat Neurosci 2: 1010–1014

    Article  PubMed  CAS  Google Scholar 

  • Lotto RB, Purves D (2000) Explaining why we see the colour contrast illusion. An empirical explanation of colour contrast. Proc Natl Acad Sci USA 97: 12834–12839

    Article  PubMed  Google Scholar 

  • Purves DP, Lotto RB (2003) Why we see what we do: a wholly probabilistic strategy of Vision. Sinaur ass, Sunderland, MA & Macmillan, London

    Google Scholar 

  • Westheimer G (2008) Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space. Vision Res 48(20): 2128–2142

    Article  PubMed  Google Scholar 

Bewusstsein, Psyche, Psychophysik

  • Baier B, Kleinschmidt A, Müller NG (2006) Cross-modal processing in early visual and auditory cortices depends on expected statistical relationship of multisensory information. J Neurosci 26: 12260–12265

    Article  PubMed  CAS  Google Scholar 

  • Glezer VD (2009) The meaning of the Weber-Fechner law and description of scenes: III. Description of the visual space. Hum Physiol 35(1): 16–20

    Article  Google Scholar 

  • Hein G et al (2007) Object familiarity and semantic congruency modulate responses in cortical audiovisual Integration areas. J Neurosci 27: 7881–7887

    Article  PubMed  CAS  Google Scholar 

  • Müller NG, Kleinschmidt A (2003) Dynamic Interaction of object- and space-based attention in retinotopic visual areas. J Neurosci 23: 9812–9816

    PubMed  Google Scholar 

  • Müller NG, Kleinschmidt A (2007) Temporal dynamics of the attentional spotlight: neuronal correlates of attentional capture and inhibition of return in early visual cortex. J Cogn Neurosci 19(4): 587–593

    Article  PubMed  Google Scholar 

  • Müller NG et al (2003) A physiological correlate of the "zoom lens" of visual. J Neurosci 23: 3561–3565

    PubMed  Google Scholar 

  • Singer W (1992) Hirnentwicklung und Umwelt. In: Singer W (Hrsg) Gehirn und Kognition. Spektrum Akadem, Heidelberg, S 50–65

    Google Scholar 

  • Singer W (2007) Understanding the brain. How can our Intuition fail so fundamentally when it comes to studying the organ to which it owes its existence? EMBO Rep 8 Spec No: S16–S19

    Article  CAS  Google Scholar 

Blindsehen, Außergewöhnliche Wahrnehmungen

  • Arzy S Molnar-Szakacs I, Blanke O (2008) Self in time: imagined self-location influences neural activity related to mental time travel. J Neurosci 28(25): 6502–6507

    Article  PubMed  CAS  Google Scholar 

  • Blanke O et al (2005) Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. J Neurosci 25(3): 550–557

    Article  PubMed  CAS  Google Scholar 

  • Kouider S, Dehaene S (2007) Levels of processing during nonconscious perception: a critical review of visual masking. Philos Trans R Soc Lond B Biol Sci 362(1481): 857–875

    Article  PubMed  Google Scholar 

  • Lopez C, Halje P, Blanke O (2008) Body ownership and embodiment: vestibular and multisensory mechanisms. Neurophysiol Clin 38(3): 149–161

    Article  PubMed  CAS  Google Scholar 

  • Mohr C, Blanke O (2005) The demystification of autoscopic phenomena: experimental propositions. Curr Psychiatry Rep 7(3): 189–195

    Article  PubMed  Google Scholar 

  • Radoeva PD et al (2008) Neural activity within area V1 reflects unconscious visual performance in a case of blindsight. J Cogn Neurosci 20(11): 1927–1939

    Article  PubMed  Google Scholar 

  • Stoerig P (2006) Blindsight, conscious Vision, and the role of primary visual cortex. Prog Brain Res 155: 217–234

    Article  PubMed  Google Scholar 

Box 23-1 Methoden: Optical imaging

  • Baker BJ et al (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25(2): 245–282

    Article  PubMed  CAS  Google Scholar 

  • Fujii R et al (2008) Imaging of molecular dynamics regulated by electrical activities in neural circuits and in synapses. Neurosignals 16(4): 260–277

    Article  PubMed  CAS  Google Scholar 

  • Hires SA et al (2008) Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol 36(1-4): 69–86

    Article  PubMed  CAS  Google Scholar 

  • Niell CM, Smith SJ (2003) Live optical imaging of nervous System development. Annu Rev Physiol 65: 161–175

    Article  Google Scholar 

  • Nikolaus S et al (2007) Investigating the dopaminergic synapse in vivo. I. Molecular imaging studies in humans. Rev Neurosci 18(6): 439–472

    PubMed  CAS  Google Scholar 

  • Qiu DL et al (2008) Targeted optical probing of neuronal circuit dynamics using fluorescent protein sensors. Neurosignals 16(4): 289–299

    Article  PubMed  CAS  Google Scholar 

  • Yaksi E, Friedrich RW (2006) Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat Methods 3(5): 377–383

    Article  PubMed  CAS  Google Scholar 

Tomographie

  • Filippi M (2009) fMRI techniques and protocols. Springer, Berlin

    Book  Google Scholar 

  • Holdsworth SJ, Bammer R (2008) Magnetic resonance imaging techniques: fMRI, DWI, and PWI. Semin Neurol 28(4): 395–406

    Article  PubMed  Google Scholar 

  • Müller NG, Kleinschmidt A (2007) Temporal dynamics of the attentional spotlight: neuronal correlates of attentional capture and inhibition of return in early visual cortex. J Cogn Neurosci 19(4): 587–593

    Article  PubMed  Google Scholar 

  • Ulmer S, Jansen O (2009) fMRI – basics and clinical applications. Springer, Berlin

    Google Scholar 

Transcraniale magnetische Stimulation

  • Rossini PM, Rossi S (2007) Transcranial magnetic Stimulation: diagnostic, therapeutic, and research potential. Neurology 68(7): 484–488

    Article  PubMed  Google Scholar 

  • Siebner H, Ziemann U (2007) Das TMS-Buch: Handbuch der transkraniellen Magnetstimulation. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W., Frings, S. (2009). Zur Funktion des Gehirns: Die Sehwelt. In: Tier- und Humanphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00462-9_23

Download citation

Publish with us

Policies and ethics