Skip to main content

Chemische Sinne

  • Chapter
  • 10k Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Große Worte über die Bedeutung chemischer Sinne für unser Leben zu verlieren, können wir uns ersparen. Es darf aber darauf hingewiesen werden, dass für viele Tiere, insbesondere für nachtaktive Säugetiere und soziale Insekten, chemische Sinne nicht nur zum Suchen und zur Prüfung der Nahrung und nicht nur zur Orientierung in einer duftenden Umwelt dienen, sondern auch im Dienste eines ausgeklügelten chemischen Kommunikationssystems stehen. Auch wenn wir Menschen tausend verschiedene Düfte wahrnehmen können, in der Empfindlichkeit, Diversität und Präzision bei der Identifizierung einzelner Substanzen und der Ortung ihrer Quelle sind uns zahlreiche Tiere, viele Insekten eingeschlossen, überlegen. Trotzdem ist auch heute noch bei nicht wenigen flüchtigen Molekülen die Nase des Chemikers oder professionellen Duftprüfers das leistungsfähigste Analysengerät. Manche Duftstoffe sind in Konzentrationen von bis 10-18 mol/l Luft oder Wasser wirksam, eine unvorstellbar niedrige Konzentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatuur

  • Damann N et al (2008) TRPs in our senses. Curr Biol 18(18): R880–R889

    Article  PubMed  CAS  Google Scholar 

  • Hawkes H, Doty RL (2009) The neurology of olfaction. Cambridge University Press, Cambridge

    Google Scholar 

  • Katz DB et al (2008) Receptors, circuits, and behaviors: new directions in chemical senses. J Neurosci 28(46): 11802–11805

    Article  PubMed  CAS  Google Scholar 

  • Menini A (2009) The neurobiology of olfaction (Frontiers in neuroscience). CRC Press, Boca Raton

    Google Scholar 

  • Pinel JPJ, Pauli P (2007) Biopsychologie. Spektrum, Heidelberg

    Google Scholar 

Allgemeines, Geruch bei Wirbeltieren und Mensch

  • Beauchamp GK, Yamazaki K (2005) Individual differences and the chemical senses. Chem Senses 30: i6–i9

    Article  PubMed  Google Scholar 

  • Cometto-Muniz JE et al (2005) Determinants for nasal trigeminal detection of volatile organic compounds. Chem Senses 30(8): 627–642

    Article  PubMed  CAS  Google Scholar 

  • Elsaesser R, Paysan J (2007) The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells. BMC Neurosci 8(Suppl 3): S1

    Article  PubMed  CAS  Google Scholar 

  • Feinstein et al (2004) Axon guidance of mouse olfactory sensory neurons by odorant receptors and the ß2 adrenergic receptor. Cell 117(6): 833–846

    Article  PubMed  CAS  Google Scholar 

  • Frasnelli J, Hummel T (2007) Interactions between the chemical senses: trigeminal function in patients with olfactory loss. Int J Psychophysiol 65(3): 177–181

    Article  PubMed  CAS  Google Scholar 

  • Friedrich RW (2006) Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci 29(1): 40–47

    Article  PubMed  CAS  Google Scholar 

  • Go Y, Niimura Y (2008). Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25(9): 897–907

    Article  CAS  Google Scholar 

  • Kaneko H et al (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24(36): 7931–7938

    Article  PubMed  CAS  Google Scholar 

  • Krautwurst D (2008) Human olfactory receptor families and their odorants. Chem Biodivers 5(6): 842–852

    Article  PubMed  CAS  Google Scholar 

  • Ma M (2007) Encoding olfactory Signals via multiple chemosensory Systems. Crit Rev Biochem Mol Biol 42(6): 463–480

    Article  PubMed  CAS  Google Scholar 

  • Mori K (2003) Grouping of odorant receptors: odour maps in the mammalian olfactory bulb. Biochem Soc Trans 31(Pt 1): 134–136

    PubMed  CAS  Google Scholar 

  • Nei M et al (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9(12): 951–963

    Article  PubMed  CAS  Google Scholar 

  • Nijmura Y, Nei M (2005) Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages. Gene 346: 23–28

    Article  CAS  Google Scholar 

  • Ray A et al (2008) A regulatory code for neuron-specific odor receptor expression. Plos Biol 6(5): e125

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez I (2007) Odorant and pheromone receptor gene regulation in vertebrates. Curr Opin Genet Dev 17(5): 465–470

    Article  PubMed  CAS  Google Scholar 

  • Small DM, Prescott J (2005) Odor/taste integration and the perception of flavor. Exp Brain Res 66(3-4): 345–357

    Article  Google Scholar 

  • Sun BC, Halpern BP (2005) Identification of air phase retronasal and orthonasal odorant pairs. Chem Senses 30: 693–706

    Article  PubMed  Google Scholar 

  • Tominaga M (2005) Molecular mechanisms of trigeminal nociception and sensation of pungency. Chem Senses 30: i191–i192

    Article  PubMed  CAS  Google Scholar 

  • Young JM et al (2008) Extensive copy-number Variation of the human olfactory receptor gene family. Am J Hum Genet 83(2): 228–242

    Article  PubMed  CAS  Google Scholar 

Vomeronasales Organ, Pheromone Wirbeltiere, Individual- u. Familiengeruch

  • Baxi KN et al (2006) Is the vomeronasal System really specialized for detecting pheromones? Trends Neurosci 29(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  • Brennan PA, Binns EK (2005) Vomeronasal mechanisms of mate recognition in mice. Chem Senses 30: i148–i149

    Article  PubMed  Google Scholar 

  • Gelez H, Fabre-Nys C (2004) The „male effect“ in sheep and goats: a review of the respective roles of the two olfactory Systems. Horm Behav 46(3): 257–271

    Article  PubMed  CAS  Google Scholar 

  • Grammer K et al (2005) Human pheromones and sexual attraction. Eur J Obstet Gynecol Reprod Biol 118(2): 135–142

    Article  PubMed  CAS  Google Scholar 

  • He J et al (2008) Encoding gender and individual information in the mouse vomeronasal organ. Science 320(5875): 535–538

    Article  PubMed  CAS  Google Scholar 

  • Hofer D et al (2000) Identification of cytoskeletal markers for the different microvilli and cell types of the rat vomeronasal sensory epithelium. J Neurocytol 29(3): 147–156

    Article  PubMed  CAS  Google Scholar 

  • Jacob S et al (2005) Assessing putative human pheromones. In: Rouby C et al (eds) Olfaction, taste, and cognition. Cambridge University Press, Cambridge, pp 178–195

    Google Scholar 

  • Koyama S (2004) Primer effects by conspecific odors in house mice: a new perspective in the study of primer effects. Horm Behav 64: 303–310

    Article  Google Scholar 

  • Lanuza E et al (2008) Sexual pheromones and the evolution of the reward System of the brain: the chemosensory function of the amygdala. Brain Res Bull 75(2-4): 460–466

    Article  PubMed  CAS  Google Scholar 

  • Levai O et al (2006) Cells in the vomeronasal organ express odorant receptors but project to the accessory olfactory bulb. J Comp Neurol 498(4): 476–490

    Article  PubMed  CAS  Google Scholar 

  • Meredith M (2001) Human vomeronasal organ function: a critical review of best and worst cases. Chem Senses 26: 433–445

    Article  PubMed  CAS  Google Scholar 

  • More L (2006) Mouse major urinary proteins trigger ovulation via the vomeronasal organ. Chem Senses 31(5): 393–401

    Article  PubMed  CAS  Google Scholar 

  • Muramoto K et al (2007) Target regulation of V2R expression and functional maturation in vomeronasal sensory neurons in vitro. Eur J Neurosci 26(12): 3382–3394

    Article  PubMed  Google Scholar 

  • Okamura H, Mori Y (2005) Characterization of the primer pheromone molecules responsible for the ‚male effect' in ruminant species. Chem Senses 30: i140–i141

    Article  PubMed  CAS  Google Scholar 

  • Roberts SG et al (2005) Body odor similarity in noncohabiting twins. Chem Senses 30: 651–656

    Article  PubMed  Google Scholar 

  • Rodriguez I (2007) Odorant and pheromone receptor gene regulation in vertebrates. Curr Opin Genet Dev 17(5): 465–470

    Article  PubMed  CAS  Google Scholar 

  • Stowers L, Marton TF (2005) What is a pheromone? Mammalian pheromones reconsidered. Neuron 46(5): 699–702

    Article  PubMed  CAS  Google Scholar 

  • Takigami S et al (2004) Morphological evidence for two types of mammalian vomeronasal System. Chem Senses 29: 301–310

    Article  PubMed  Google Scholar 

  • Thompson RN et al (2004) Sex-specific responses to urinary chemicals by the mouse vomeronasal organ. Chem Senses 29: 749–754

    Article  PubMed  CAS  Google Scholar 

  • Thompson RN et al (2007) Pregnancy block by MHC class I peptides is mediated via the production of inositol 1,4,5-trisphosphate in the mouse vomeronasal organ. J Exp Biol 210(Pt 8): 1406–1412

    Article  PubMed  CAS  Google Scholar 

  • Wang Z et al (2007) Are pheromones detected through the main olfactory epithelium? Mol Neurobiol 35(3): 317–323

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K et al (1981) Distinctive urinary odors governed by the major histocompatibility locus of the mouse. Proc Natl Acad Sci USA 78: 5817–5820

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Firestein S (2007) Nose thyself: individuality in the human olfactory genome. Genome Biol 8(11): 230

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Leinders-Zufall T (2007) Mammalian pheromone sensing. Curr Opin Neurobiol 17(4): 483–489

    Article  PubMed  CAS  Google Scholar 

Geschmack Wirbeltiere

  • Abe K (2008) Studies on taste: molecular biology and food science. Biosci Biotechnol Biochem 72(7): 1647–1656

    Article  PubMed  CAS  Google Scholar 

  • Andres-Barquin PJ, Conte C (2004) Molecular basis of bitter taste: the T2R family of G protein-coupled receptors. Cell Biochem Biophys 41(1): 99–112

    Article  PubMed  CAS  Google Scholar 

  • Chale-Rush A et al (2007) Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem Senses 32(5): 423–431

    Article  PubMed  CAS  Google Scholar 

  • Fushiki T, Kawai T (2005) Chemical reception of fats in the oral cavity and the mechanism of addiction to dietary fat. Chem Senses 30: i184–i185

    Article  PubMed  CAS  Google Scholar 

  • Go Y et al (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and non-human primates. Genetics 170(1): 313–326

    Article  PubMed  CAS  Google Scholar 

  • Green BG et al (2004) Individual differences in perception of bitterness from capsaicin, piperine and zingerone. Chem Senses 29(1): 53–60

    Article  PubMed  Google Scholar 

  • He W (2004) Umami taste responses are mediated by alpha-transducin and alpha-gustducin. J Neurosci 24(35): 7674–7680

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Bryant BP (2005) Multiple types of sensory neurons respond to irritating volatile organic compounds (VOCs): calcium fluorimetry of trigeminal ganglion neurons. Pain 117(1-2): 193–203

    Article  PubMed  CAS  Google Scholar 

  • Kamphuis MM et al (2003) The effect of addition of linoleic acid on food intake regulation in linoleic acid tasters and linoleic acid non-tasters. Br J Nutr 90: 199–206

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Hayakawa Y (2005) Complex taste – taste of D-amino acids. Chem Senses 30: i240–i241

    Article  PubMed  CAS  Google Scholar 

  • Kim UK, Drayna D (2005) Genetics of individual differences in bitter taste perception: lessons from the PTC gene. Clin Genet 67(4): 275–280

    Article  PubMed  CAS  Google Scholar 

  • Kondoh T, Torii K (2008) Brain activation by umami substances via gustatory and visceral signaling pathways, and physiological significance. Biol Pharm Bull 31(10): 1827–1832

    Article  PubMed  CAS  Google Scholar 

  • Lawless HT et al (2004) Metallic taste from electrical and chemical Stimulation. Chem Senses 30: 185–194

    Article  CAS  Google Scholar 

  • Lim J, Green BG (2008) Tactile interaction with taste localization: influence of gustatory quality and intensity. Chem Senses 33(2): 137–143

    Article  PubMed  Google Scholar 

  • Lim J, Lawless HT (2005) Oral sensations from iron and copper sulfate. Physiol Behav 85(3): 308–313

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Urban L, Green BG (2008) Measures of individual differences in taste and creaminess perception. Chem Senses 33(6): 493–501

    Article  PubMed  Google Scholar 

  • Lundy RF Jr (2008) Gustatory hedonic value: potential function for forebrain control of brainstem taste processing. Neurosci Biobehav Rev 32(8):1601–1606

    Article  PubMed  Google Scholar 

  • McCaughey SA (2008) The taste of sugars. Neurosci Biobehav Rev 32(5): 1024–1043

    Article  PubMed  CAS  Google Scholar 

  • Medler K (2008) Signaling mechanisms controlling taste cell function. Crit Rev Eukaryot Gene Expr 18(2): 125–137

    PubMed  CAS  Google Scholar 

  • Meyerhof W et al (2005) Human bitter taste perception. Chem Senses 30: i14–i15

    Article  PubMed  Google Scholar 

  • Ozek M et al (2004) Receptors for bitter, sweet and umami taste couple to inhibitory G protein signaling pathways. Eur J Pharmacol 489(3): 139–149

    Article  CAS  Google Scholar 

  • Shi P et al (2003) Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol 20(5): 805–814

    Article  PubMed  CAS  Google Scholar 

  • Skramlik von E (1937) Psychophysiologie der Sinne. In: Wirth W (Hrsg) Archiv für die gesamte Psychologie, 4. Erg-Bd. Akad Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Stevens DA et al (2008) A direct comparison of the taste of electrical and chemical Stimuli. Chem Senses 33(5): 405–413

    Article  PubMed  Google Scholar 

  • Sun BC, Halpern BP (2005) Identification of air phase retronasal and orthonasal odorant pairs. Chem Senses 30: 693–706

    Article  PubMed  Google Scholar 

  • Talavera K et al (2008) The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 22(5): 1343–1355

    Article  PubMed  CAS  Google Scholar 

  • Winkel C (2008) New developments in umami (enhancing) molecules. Chem Biodivers 5(6): 1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Wooding S et al (2004) Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet 74(4): 637–646

    Article  PubMed  CAS  Google Scholar 

  • Yasuo T et al (2008) Multiple receptor Systems for glutamate detection in the taste organ. Biol Pharm Bull 31(10): 1833–1837

    Article  PubMed  CAS  Google Scholar 

Insekten

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W., Frings, S. (2009). Chemische Sinne. In: Tier- und Humanphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00462-9_20

Download citation

Publish with us

Policies and ethics