Conformal Field Theory on the Torus

  • Ralph Blumenhagen
  • Erik Plauschinn
Part of the Lecture Notes in Physics book series (LNP, volume 779)

So far, we have been discussing Conformal Field Theories defined on the complex plane respectively the Riemann sphere. In String Theory, such theories correspond to the treelevel in perturbation theory which is illustrated


Partition Function Modular Form Vertex Operator Conformal Block Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Cardy, “Operator content of two-dimensional conformally invariant theories,” Nucl. Phys. B270 (1986) 186–204.CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    A. Cappelli, C.Itzykson, and J. B. Zuber, “Modular invariant partition functions in two-imensions,” Nucl. Phys. B280 (1987) 445–465.CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, “Strings on orbifolds,” Nucl. Phys. B261 (1985) 678–686.CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    L. J. Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, “The conformal field theory of orbifolds,” Nucl. Phys. B282 (1987) 13–73.CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    E. P. Verlinde, “Fusion rules and modular transformations in 2D conformal field theory,” Nucl. Phys. B300 (1988) 360.CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    V. A. Fateev and A. B. Zamolodchikov, “Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z(n) invariant statistical systems,” Sov. Phys. JETP 62 (1985) 215–225.MathSciNetGoogle Scholar
  7. [7]
    D. Gepner and Z.-a. Qiu, “Modular invariant partition functions for parafermionic field theories,” Nucl. Phys. B285 (1987) 423.CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    A. N. Schellekens and S. Yankielowicz, “Extended Chiral algebras and modular invariant partition functions,” Nucl. Phys. B327 (1989) 673.CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    W. Nahm, A. Recknagel, and M. Terhoeven, “Dilogarithm identities in conformal field theory,” Mod. Phys. Lett. A8 (1993) 1835–1848, hep-th/9211034.MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ralph Blumenhagen
    • 1
  • Erik Plauschinn
    • 1
  1. 1.Max-Planck-Institut für Physik Werner-Heisenberg-InstitutMünchenGermany

Personalised recommendations