Advertisement

Symmetries of Conformal Field Theories

  • Ralph Blumenhagen
  • Erik Plauschinn
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 779)

In the last chapter, we have seen how conformal symmetry can be used as a tool for studying, and in some cases even “solving”, Conformal Field Theories. In particular, we identified the chiral and the anti-chiral sector of a CFT whose structure is severely constrained by the conformal symmetry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. [1]
    V.G. Kac, “Infinite dimensional Lie algebras,”. Cambridge, UK: University Press (1990) 400p.zbMATHGoogle Scholar
  2. [2]
    V.G. Kac and D.H. Peterson, “Infinite dimensional Lie algebras, theta functions and modular forms,” Adv. Math. 53 (1984) 125–264.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    V.G. Knizhnik and A.B. Zamolodchikov, “Current algebra and Wess-Zumino model in two dimensions,” Nucl. Phys. B247 (1984) 83–103.CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    P.Goddard, A.Kent, and D.I. Olive, “Virasoro algebras and coset space models,” Phys. Lett. B152 (1985) 88.MathSciNetADSGoogle Scholar
  5. [5]
    P.Goddard, A.Kent, and D.I. Olive, “Unitary representations of the Virasoro and Supervirasoro algebras,” Commun. Math. Phys. 103 (1986) 105–119.zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. [6]
    A.B. Zamolodchikov, “Infinite additional symmetries in two-dimensional conformal quantum field theory,” Theor. Math. Phys. 65 (1985) 1205–1213.CrossRefMathSciNetGoogle Scholar
  7. [7]
    P.Bouwknegt and K.Schoutens, “W symmetry,” Adv. Ser. Math. Phys. 22 (1995) 1–875.MathSciNetGoogle Scholar
  8. [8]
    R.Blumenhagen, A.Flohr, M.Kliem, W.Nahm, A.Recknagel, and R.Varnhagen, “W algebras with two and three generators,” Nucl. Phys. B361 (1991) 255–289.CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ralph Blumenhagen
    • 1
  • Erik Plauschinn
    • 1
  1. 1.Max-Planck-Institut für Physik Werner-Heisenberg-InstitutMünchenGermany

Personalised recommendations