Males’ and Females’ Script Debugging Strategies

  • Valentina Grigoreanu
  • James Brundage
  • Eric Bahna
  • Margaret Burnett
  • Paul ElRif
  • Jeffrey Snover
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5435)

Abstract

Little research has addressed IT professionals’ script debugging strategies, or considered whether there may be gender differences in these strategies. What strategies do male and female scripters use and what kinds of mechanisms do they employ to successfully fix bugs? Also, are scripters’ debugging strategies similar to or different from those of spreadsheet debuggers? Without the answers to these questions, tool designers do not have a target to aim at for supporting how male and female scripters want to go about debugging. We conducted a think-aloud study to bridge this gap. Our results include (1) a generalized understanding of debugging strategies used by spreadsheet users and scripters, (2) identification of the multiple mechanisms scripters employed to carry out the strategies, and (3) detailed examples of how these debugging strategies were employed by males and females to successfully fix bugs.

Keywords

Gender Debugging Scripting Debugging Strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandura, A.: Social Foundations of Thought and Action. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  2. 2.
    Basili, V., Selby, R.: Comparing the Effectiveness of Software Testing Strategies. IEEE Trans. Soft. 13(12), 1278–1296 (1987)CrossRefGoogle Scholar
  3. 3.
    Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S., Hastings, M.: Effectiveness of End-User Debugging Software Features: Are There Gender Issues? In: Proc. ACM CHI 2005, pp. 869–878 (2005)Google Scholar
  4. 4.
    Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell, A., Cook, C.: Tinkering and Gender in End-User Programmers Debugging. In: Proc. ACM CHI 2006, pp. 231–240 (2006)Google Scholar
  5. 5.
    Beckwith, L., Inman, D., Rector, K., Burnett, M.: On to the Real World: Gender and Self-Efficacy in Excel. In: Proc. IEEE VLHCC (2007)Google Scholar
  6. 6.
    Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Comm. ACM 47(9), 53–58 (2004)CrossRefGoogle Scholar
  7. 7.
    Danis, C., Kellogg, W., Lau, T., Stylos, J., Dredze, M., Kushmerick, N.: Managers’ Email: Beyond Tasks and To-Dos. In: ACM CHI Extended Abstracts, pp. 1324–1327 (2005)Google Scholar
  8. 8.
    Gallagher, A., De Lisi, R., Holst, P., McGillicuddy-De Lisi, A., Morely, M., Cahalan, C.: Gender Differences in Advanced Mathematical Problem Solving. J. Experimental Child Psychology 75(3), 165–190 (2000)CrossRefGoogle Scholar
  9. 9.
    Grigoreanu, V., Beckwith, L., Fern, X., Yang, S., Komireddy, C., Narayanan, V., Cook, C., Burnett, M.: Gender Differences in End-User Debugging Revisited: What the Miners Found. In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 19–26 (2006)Google Scholar
  10. 10.
    Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, R., Burnett, M., Wiedenbeck, S.: Can Feature Design Reduce the Gender Gap in End-User Software Development Environments? In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 149–156 (2008)Google Scholar
  11. 11.
    Hartzel, K.: How Self-Efficacy and Gender Issues Affect Software Adoption and Use. Communications of the ACM 46(9), 167–171 (2003)CrossRefGoogle Scholar
  12. 12.
    Heger, N., Cypher, A., Smith, D.: Cocoa at the Visual Programming Challenge 1997. Journal of Visual Languages and Computing 9(2), 151–169 (1998)CrossRefGoogle Scholar
  13. 13.
    Ioannidou, A., Repenning, A., Webb, D.: Using Scalable Game Design to Promote 3D Fluency: Assessing the AgentCubes Incremental 3D End-User Development Framework. In: Ioannidou, A., Repenning, A., Webb, D. (eds.) IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 47–54 (2008)Google Scholar
  14. 14.
    Kandogan, E., Haber, E., Barrett, R., Cypher, A., Maglio, P., Zhao, H.: A1: End-User Programming for Web-based System Administration. In: ACM UIST 2005, pp. 211–220 (2005)Google Scholar
  15. 15.
    Katz, I., Anderson, J.: Debugging: An Analysis of Bug-Location Strategies. In: Human-Computer Interaction, vol. 3, pp. 351–399 (1988)Google Scholar
  16. 16.
    Kelleher, C., Pausch, R., Kiesler, S.: Storytelling Alice Motivates Middle School Girls to Learn Computer Programming. In: Proc. ACM CHI 2007, pp. 1455–1464 (2007)Google Scholar
  17. 17.
    Ko, A.J., Myers, B.A.: Designing the Whyline: A Debugging Interface for Asking Questions about Program Failures. In: Proc. ACM CHI 2004, pp. 151–158 (2004)Google Scholar
  18. 18.
    Ko, A., DeLine, R., Venolia, G.: Information Needs in Collocated Software Development Teams. In: International Conference on Software Engineering, pp. 344–353 (2007)Google Scholar
  19. 19.
    Littman, D.C., Pinto, J., Letovsky, S., Soloway, E.: Mental Models and Software Maintenance. In: Soloway, E., Iyengar, S. (eds.) Proc. ESP. Ablex, Norwood, NJ, pp. 80–98 (1986)Google Scholar
  20. 20.
    Meyers-Levy, J.: Gender Differences in Information Processing: A Selectivity Interpretation. In: Cafferata, P., Tybout, A. (eds.) Cognitive and Affective Responses to Advertising, Lexington, Ma, Lexington Books (1989)Google Scholar
  21. 21.
    Nanja, N., Cook, C.: An Analysis of the On-Line Debugging Process. In: Olson, G.M., Sheppard, S., Soloway, E. (eds.) Proc. ESP, Ablex, Norwood (1987)Google Scholar
  22. 22.
    Nardi, B.: A Small Matter of Programming: Perspectives on End-User Computing. MIT Press, Cambridge (1993)Google Scholar
  23. 23.
    O’Donnell, E., Johnson, E.: The Effects of Auditor Gender and Task Complexity on Information Processing Efficiency. Int. J. Auditing 5, 91–105 (2001)CrossRefGoogle Scholar
  24. 24.
    Pennington, N.: Stimulus Structures and Mental Representations in Expert Comprehension of Computer Programs. Cognitive Psychology 19(3), 295–341 (1987)CrossRefGoogle Scholar
  25. 25.
    Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M., Burnett, M.: Strategies and Behaviors of End-User Programmers with Interactive Fault Localization. In: IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 15–22 (2003)Google Scholar
  26. 26.
    Rigby, P., German, D., Storey, M.: Open Source Software Peer Review Practices: A Case Study of the Apache Server. In: International Conference on Software Engineering, pp. 541–550 (2008)Google Scholar
  27. 27.
    Rode, J.A.: An Ethnographic Examination of the Relationship of Gender & End-User Programming, Ph.D. Thesis, University of California Irvine (2008)Google Scholar
  28. 28.
    Rode, J.A., Toye, E.F., Blackwell, A.F.: The Fuzzy Felt Ethnography - Understanding the Programming Patterns of Domestic Appliances. Personal and Ubiquitous Computing 8, 161–176 (2004)CrossRefGoogle Scholar
  29. 29.
    Romero, P., du Boulay, B., Cox, R., Lutz, R., Bryant, S.: Debugging Strategies and Tactics in a Multi-Representation Software Environment. International Journal on Human-Computer Studies 61, 992–1009 (2007)CrossRefGoogle Scholar
  30. 30.
    Rosson, M., Sinha, H., Bhattacharya, M., Zhao, D.: Design Planning in End-User Web Development. In: Proc. VLHCC. IEEE, Los Alamitos (2007)Google Scholar
  31. 31.
    Storey, M., Ryall, J., Bull, R.I., Myers, D., Singer, J.: TODO or to bug: Exploring How Task Annotations Play a Role in the Work Practices of Software Developers. In: International Conference on Software Engineering, pp. 251–260 (2008)Google Scholar
  32. 32.
    Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Narayanan, V., Bucht, K., Drummond, R., Fern, X., Wiedenbeck, S., Burnett, M.: Testing vs. Code Inspection vs. ...What Else? Male and Female End Users’ Debugging Strategies. In: Proc. ACM CHI (2008)Google Scholar
  33. 33.
    Torkzadeh, G., Koufteros, X.: Factorial Validity of a Computer Self-Efficacy Scale and the Impact of Computer Training. Educational and Psychological Measurement 54(3), 813–821 (1994)CrossRefGoogle Scholar
  34. 34.
    Weiser, M.: Programmers Use Slices When Debugging, Comm. ACM 25(7), 446–452 (1982)CrossRefGoogle Scholar
  35. 35.
    Whitaker, A., Cox, R., Gribble, S.: Configuration Debugging as Search: Finding the Needle in the Haystack. In: 6th Symposium on Operating System Design and Implementation (2004)Google Scholar
  36. 36.
    Windows PowerShell Wikipedia entry (accessed on August 20, 2008), http://en.wikipedia.org/wiki/Powershell
  37. 37.
    Yuan, C., Lao, N., Wen, J., Li, J., Zhang, Z., Wang, Y., Ma, W.: Automated known problem diagnosis with event traces. In: Proc. ACM Sigops/Eurosys European Conference on Computer Systems (2006)Google Scholar
  38. 38.
    Zang, N., Rosson, M.B.: What’s in a Mashup? And Why? Studying the Perceptions of Web-Active End Users. In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 31–38 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Valentina Grigoreanu
    • 1
    • 2
  • James Brundage
    • 2
  • Eric Bahna
    • 2
  • Margaret Burnett
    • 1
  • Paul ElRif
    • 2
  • Jeffrey Snover
    • 2
  1. 1.School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallisUSA
  2. 2.Microsoft, One Microsoft Way, RedmondWashingtonUSA

Personalised recommendations