TermeX: A Tool for Collocation Extraction

  • Davor Delač
  • Zoran Krleža
  • Jan Šnajder
  • Bojana Dalbelo Bašić
  • Frane Šarić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5449)


Collocations – word combinations occurring together more often than by chance – have a wide range of NLP applications. Many approaches for automating collocation extraction based on lexical association measures have been proposed in the literature. This paper presents TermeX – a tool for efficient extraction of collocations based on a variety of association measures. TermeX implements POS filtering and lemmatization, and is capable of extracting collocations up to length four. We address trade-offs between high memory consumption and processing speed and propose an efficient implementation. Our implementation allows for processing time linear to corpus size and memory consumption linear to the number of word types.


Machine Translation Hash Table Vector Versus Association Measure Natural Language Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword expressions: A pain in the neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, p. 1. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Benson, M.: Collocations and general-purpose dictionaries. International Journal of Lexicography 3(1), 23–35 (1990)CrossRefGoogle Scholar
  3. 3.
    Yarowsky, D.: One sense per collocation. In: Proceedings of ARPA Human Language Technology Workshop (1993)Google Scholar
  4. 4.
    Mihalcea, R., Faruque, E.: Senselearner: Minimally supervised word sense disambiguation for all words in open text. In: Proceedings of ACL/SIGLEX Senseval (2004)Google Scholar
  5. 5.
    McCardell Doerr, R.: A lexical semantic and statistical approach to lexical collocation extraction for natural language generation. AI Magazine 16, 105 (1995)Google Scholar
  6. 6.
    Orilac, B., Dillinger, M.: Collocation extraction for machine translation. In: Machine Translation Summit IX, pp. 292–298 (2003)Google Scholar
  7. 7.
    Barlow, M.: Collocate 1.0: Locating collocations and terminology. TX: Athelstan (2004)Google Scholar
  8. 8.
    Aroonmanakun, W.: Collocation extract (2000),
  9. 9.
    Chamblon Systems, Inc.: Terminology extractor (2004),
  10. 10.
    Seretan, V., Nerima, L., Wehrli, E.: A tool for multi-word collocation extraction and visualization in multilingual corpora. In: Proceedings of the 11th EURALEX International Congress (2004)Google Scholar
  11. 11.
    Petrović, S., Šnajder, J., Dalbelo Bašić, B.: Extending lexical association measures for collocation extraction. Computer, Speech and Language (submitted, 2008)Google Scholar
  12. 12.
    Lesk, M.E.: Lex – a lexical analyzer generator. Technical report, AT&T Bell Laboratories, Murray Hill, New Jersey (1975)Google Scholar
  13. 13.
    Erjavec, T., Krstev, C., Petkevič, V., Simov, K., Tadić, M., Vitas, D.: The MULTEXT-East morphosyntactic specifications for Slavic languages. In: Proceedings of the EACL 2003 Workshop on Morphological Processing of Slavic Languages (2003)Google Scholar
  14. 14.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Computer Series, Reading (2000)zbMATHGoogle Scholar
  15. 15.
    Eckel, B.: Thinking in Java, 4th edn. Prentice-Hall, Englewood Cliffs (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Davor Delač
    • 1
  • Zoran Krleža
    • 1
  • Jan Šnajder
    • 1
  • Bojana Dalbelo Bašić
    • 1
  • Frane Šarić
    • 1
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebCroatiaCroatia

Personalised recommendations