Skip to main content

Toward SLAM on Graphs

  • Chapter

Part of the Springer Tracts in Advanced Robotics book series (STAR,volume 57)

Abstract

We present an algorithm for SLAM on planar graphs. We assume that a robot moves from node to node on the graph using odometry to measure the distance between consecutive landmark observations. At each node, the robot follows a branch chosen at random, without reporting which branch it follows. A low-level process detects (with some uncertainty) the presence of landmarks, such as corners, branches, and bumps, but only triggers a binary flag for landmark detection (i.e., the robot is oblivious to the details or “appearance” of the landmark). Under uncertainties of the robot’s odometry, landmark detection, and the current landmark position of the robot, we present an E-M-based SLAM algorithm for two cases: (1) known, arbitrary topology with unknown edge lengths and (2) unknown topology, but restricted to “elementary” 1- and 2-cycle graphs. In the latter case, the algorithm (flexibly and reversibly) closes loops and allows for dynamic environments (adding and deleting nodes).

Keywords

  • Planar Graph
  • Simultaneous Localization
  • Landmark Detection
  • Generalize Voronoi Graph
  • Unknown Topology

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-00312-7_39
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-00312-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Andrews, G.E.: The theory of partitions. Addison-Wesley, Reading (1976)

    MATH  Google Scholar 

  3. Bailey, T.: Mobile Robot Localisation and Mapping in Extensive Outdoor Environments. PhD thesis, Department of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney (2002)

    Google Scholar 

  4. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Robot. Autom. 12, 869–880 (1996)

    CrossRef  Google Scholar 

  5. Chhikara, R.S., Folks, J.L.: The inverse Gaussian distribution: theory, methodology, and applications. Marcel Dekker, Inc., New York (1989)

    MATH  Google Scholar 

  6. Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (slam): Toward exact localization without explicit localization. IEEE Trans. Robot. Autom. 17, 125–137 (2001)

    CrossRef  Google Scholar 

  7. Csorba, M.: Simultaneous Localisation and Map Building. PhD thesis, Department of Engineering Science, University of Oxford (1997)

    Google Scholar 

  8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  9. DuMouchel, W.: On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution. Annals of Statistics 1(5), 948–957 (1973)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Magazine 13(2), 99–108 (2006)

    CrossRef  Google Scholar 

  11. Folkesson, J., Christensen, H.I.: Closing the loop with graphical SLAM. IEEE Trans. Robot. 23(4), 731–741 (2007)

    CrossRef  Google Scholar 

  12. Gamini Dissanayake, M.W.M., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)

    CrossRef  Google Scholar 

  13. Harary, F.: Graph theory. Addison-Wesley, Reading (1969)

    Google Scholar 

  14. Jelinek, F.: Statistical methods for speech recognition. MIT Press, Cambridge (1997)

    Google Scholar 

  15. Jordan, M.I. (ed.): Learning in Graphical Models. MIT Press, Cambridge MA (1999)

    Google Scholar 

  16. Kouzoubov, K., Austin, D.: Hybrid topological/metric approach to SLAM. In: IEEE Intl Conf. Robot. Autom., April 2004, vol. 1, pp. 872–877 (2004)

    Google Scholar 

  17. Lee, J., Sponberg, S.N., Loh, O.Y., Lamperski, A.G., Full, R.J., Cowan, N.J.: Templates and anchors for antenna-based wall following in cockroaches and robots. IEEE Trans. Robot. 24(1), 130–143 (2008)

    CrossRef  Google Scholar 

  18. Lisien, B., Morales, D., Silver, D., Kantor, G., Rekleitis, I., Choset, H.: Hierarchical simultaneous localization and mapping. In: IEEE/RSJ Intl. Conf. Intell. Robots Syst., October 2003, vol. 1, pp. 448–453 (2003)

    Google Scholar 

  19. Montemerlo, M.: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem With Unknown Data Association. PhD thesis, School of Computer Science, Carnegie Mellon University (2003)

    Google Scholar 

  20. Ranganathan, A., Menegatti, E., Dellaert, F.: Bayesian inference in the space of topological maps. IEEE Trans. Robot. 22(1), 92–107 (2006)

    CrossRef  Google Scholar 

  21. Shi, L., Capponi, A., Johansson, K.H., Murray, R.M.: Network lifetime maximization via sensor trees construction and scheduling. In: Third International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks, Annapolis, MD, USA (June 2008)

    Google Scholar 

  22. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49, 1453–1464 (2004)

    CrossRef  MathSciNet  Google Scholar 

  23. Thrun, S.: Learning occupancy grid maps with forward sensor models. Autonomous Robots 15(2), 111–127 (2003)

    CrossRef  Google Scholar 

  24. Thrun, S., Montemerlo, M.: The graph SLAM algorithm with applications to large-scale mapping of urban structures. Intl. J. Robot. Res. 25(5-6), 403–429 (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De, A., Lee, J., Keller, N., Cowan, N.J. (2009). Toward SLAM on Graphs. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)