Abstract
Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot’s degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the robot’s number of degrees of freedom. In addition to supporting efficient sampling, we show that the RD-space formulation naturally supports planning, and in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1000 links in time comparable to open chain sampling, and we can generate samples for 1000-link multi-loop systems of varying topology in less than a second.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cortés, J., Siméon, T.: Probabilistic motion planning for parallel mechanisms. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Taipei, Taiwan, pp. 4354–4359 (2003)
Cortés, J., Siméon, T.: Sampling-based motion planning under kinematic loop-closure constraints. In: Algorithmic Foundations of Robotics VI, pp. 75–90. Springer, Heidelberg (2005)
Cortés, J., Siméon, T., Laumond, J.P.: A random loop generator for planning the motions of closed kinematic chains using PRM methods. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Washington, DC, pp. 2141–2146 (2002)
Garber, M., Lin, M.C.: Constraint-based motion planning using Voronoi diagrams. In: Algorithmic Foundations of Robotics V, pp. 541–558. Springer, Heidelberg (2003)
Han, L.: Hybrid probabilistic roadmap — Monte Carlo motion planning for closed chain systems with spherical joints. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), New Orleans, LA, pp. 920–926 (2004)
Han, L., Amato, N.M.: A kinematics-based probabilistic roadmap method for closed chain systems. In: New Directions in Algorithmic and Computational Robotics, pp. 233–246. A. K. Peters, Boston (2001)
Han, L., Rudolph, L.: Inverse kinematics for a serial chain with joints under distance constraints. In: Robotics Science and Systems II, pp. 177–184. MIT Press, Cambridge (2007)
Han, L., Rudolph, L.: A unified geometric approach for inverse kinematics of a spatial chain with spherical joints. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Roma, Italy, pp. 4420–4427 (2007)
Han, L., Rudolph, L.: Simplex-tree based kinematics of foldable objects as multi-body systems involving loops. In: Robotics Science and Systems IV. MIT Press, Cambridge (2009)
Han, L., Rudolph, L., Blumenthal, J., Valodzin, I.: Stratified deformation space and path planning for a planar closed chain with revolute joints. In: Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR), New York (2006)
Kallmann, M., Aubel, A., Abaci, T., Thalmann, D.: Planning collision-free reaching motion for interactive object manipulation and grasping. Computer Graphics Forum 22(3), 313–322 (2003)
Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)
Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R., Casal, A.: Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation. In: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), Osaka, Japan, pp. 546–553 (1996)
Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule: Design and control algorithms. In: Agarwal, P.K., Kavraki, L.E., Mason, M.T. (eds.) Robotics: The Algorithmic Perspective, pp. 375–386. A. K. Peters, Boston (1998)
Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)
LaValle, S., Yakey, J., Kavraki, L.: A probabilistic roadmap approach for systems with closed kinematic chains. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Detroit, MI, pp. 1671–1676 (1999)
LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: New Directions in Algorithmic and Computational Robotics, pp. 293–308. A. K. Peters (2001)
Merlet, J.-P.: Still a long way to go on the road for parallel mechanisms. In: ASME Bienneal Mech. Rob. Conf., Montreal, Canada (2002)
Milgram, R.J., Trinkle, J.C.: The geometry of configuration spaces for closed chains in two and three dimensions. Homology, Homotopy Appl. 6(1), 237–267 (2004)
Nguyen, A., Guibas, L.J., Yim, M.: Controlled module density helps reconfiguration planning. In: New Directions in Algorithmic and Computational Robotics, pp. 23–36. A. K. Peters, Boston (2001)
Oriolo, G., Mongillo, C.: Motion planning for mobile manipulators along given end-effector paths. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Barcelona, Spain, pp. 2154–2160 (2005)
Oriolo, G., Ottavi, M., Vendittelli, M.: Probabilistic motion planning for redundant robots along given end-effector paths. In: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), Lausanne, Switzerland, pp. 1657–1662 (2002)
Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Proc. 1EEE Symp. Foundations of Computer Science (FOCS), San Juan, Puerto Rico, October 1979, pp. 421–427 (1979)
Singh, A.P., Latombe, J.-C., Brutlag, D.L.: A motion planning approach to flexible ligand binding. In: Int. Conf. on Intelligent Systems for Molecular Biology (ISMB), pp. 252–261 (1999)
Tang, X., Thomas, S., Amato, N.M.: Planning with reachable distances: Fast enforcement of closure constraints. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Roma, Italy, pp. 2694–2699 (2007)
Trinkle, J.C., Milgram, R.J.: Complete path planning for closed kinematic chains with spherical joints. Int. J. Robot. Res. 21(9), 773–789 (2002)
Whitney, H.: Non-separable and planar graphs. Transactions of the American Mathematical Society 34, 339–362 (1932)
Whitney, H.: 2-isomorphic graphs. American Journal of Mathematics 55, 245–254 (1933)
Xie, D., Amato, N.M.: A kinematics-based probabilistic roadmap method for high DOF closed chain systems. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), New Orleans, LA, pp. 473–478 (2004)
Yakey, J.H., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages with closed kinematic chains. IEEE Trans. Robot. Automat. 17(6), 951–958 (2001)
Yao, Z., Gupta, K.: Path planning with general end-effector constraints: using task space to guide configuration space search. In: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), Edmonton, Alberta, Canada, pp. 1875–1880 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Tang, X., Thomas, S., Amato, N.M. (2009). Planning with Reachable Distances. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-00312-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00311-0
Online ISBN: 978-3-642-00312-7
eBook Packages: EngineeringEngineering (R0)