Skip to main content

Planning with Reachable Distances

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot’s degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the robot’s number of degrees of freedom. In addition to supporting efficient sampling, we show that the RD-space formulation naturally supports planning, and in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1000 links in time comparable to open chain sampling, and we can generate samples for 1000-link multi-loop systems of varying topology in less than a second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cortés, J., Siméon, T.: Probabilistic motion planning for parallel mechanisms. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Taipei, Taiwan, pp. 4354–4359 (2003)

    Google Scholar 

  2. Cortés, J., Siméon, T.: Sampling-based motion planning under kinematic loop-closure constraints. In: Algorithmic Foundations of Robotics VI, pp. 75–90. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Cortés, J., Siméon, T., Laumond, J.P.: A random loop generator for planning the motions of closed kinematic chains using PRM methods. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Washington, DC, pp. 2141–2146 (2002)

    Google Scholar 

  4. Garber, M., Lin, M.C.: Constraint-based motion planning using Voronoi diagrams. In: Algorithmic Foundations of Robotics V, pp. 541–558. Springer, Heidelberg (2003)

    Google Scholar 

  5. Han, L.: Hybrid probabilistic roadmap — Monte Carlo motion planning for closed chain systems with spherical joints. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), New Orleans, LA, pp. 920–926 (2004)

    Google Scholar 

  6. Han, L., Amato, N.M.: A kinematics-based probabilistic roadmap method for closed chain systems. In: New Directions in Algorithmic and Computational Robotics, pp. 233–246. A. K. Peters, Boston (2001)

    Google Scholar 

  7. Han, L., Rudolph, L.: Inverse kinematics for a serial chain with joints under distance constraints. In: Robotics Science and Systems II, pp. 177–184. MIT Press, Cambridge (2007)

    Google Scholar 

  8. Han, L., Rudolph, L.: A unified geometric approach for inverse kinematics of a spatial chain with spherical joints. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Roma, Italy, pp. 4420–4427 (2007)

    Google Scholar 

  9. Han, L., Rudolph, L.: Simplex-tree based kinematics of foldable objects as multi-body systems involving loops. In: Robotics Science and Systems IV. MIT Press, Cambridge (2009)

    Google Scholar 

  10. Han, L., Rudolph, L., Blumenthal, J., Valodzin, I.: Stratified deformation space and path planning for a planar closed chain with revolute joints. In: Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR), New York (2006)

    Google Scholar 

  11. Kallmann, M., Aubel, A., Abaci, T., Thalmann, D.: Planning collision-free reaching motion for interactive object manipulation and grasping. Computer Graphics Forum 22(3), 313–322 (2003)

    Article  Google Scholar 

  12. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    Article  Google Scholar 

  13. Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R., Casal, A.: Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation. In: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), Osaka, Japan, pp. 546–553 (1996)

    Google Scholar 

  14. Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule: Design and control algorithms. In: Agarwal, P.K., Kavraki, L.E., Mason, M.T. (eds.) Robotics: The Algorithmic Perspective, pp. 375–386. A. K. Peters, Boston (1998)

    Google Scholar 

  15. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  16. LaValle, S., Yakey, J., Kavraki, L.: A probabilistic roadmap approach for systems with closed kinematic chains. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Detroit, MI, pp. 1671–1676 (1999)

    Google Scholar 

  17. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: New Directions in Algorithmic and Computational Robotics, pp. 293–308. A. K. Peters (2001)

    Google Scholar 

  18. Merlet, J.-P.: Still a long way to go on the road for parallel mechanisms. In: ASME Bienneal Mech. Rob. Conf., Montreal, Canada (2002)

    Google Scholar 

  19. Milgram, R.J., Trinkle, J.C.: The geometry of configuration spaces for closed chains in two and three dimensions. Homology, Homotopy Appl. 6(1), 237–267 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Nguyen, A., Guibas, L.J., Yim, M.: Controlled module density helps reconfiguration planning. In: New Directions in Algorithmic and Computational Robotics, pp. 23–36. A. K. Peters, Boston (2001)

    Google Scholar 

  21. Oriolo, G., Mongillo, C.: Motion planning for mobile manipulators along given end-effector paths. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Barcelona, Spain, pp. 2154–2160 (2005)

    Google Scholar 

  22. Oriolo, G., Ottavi, M., Vendittelli, M.: Probabilistic motion planning for redundant robots along given end-effector paths. In: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), Lausanne, Switzerland, pp. 1657–1662 (2002)

    Google Scholar 

  23. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Proc. 1EEE Symp. Foundations of Computer Science (FOCS), San Juan, Puerto Rico, October 1979, pp. 421–427 (1979)

    Google Scholar 

  24. Singh, A.P., Latombe, J.-C., Brutlag, D.L.: A motion planning approach to flexible ligand binding. In: Int. Conf. on Intelligent Systems for Molecular Biology (ISMB), pp. 252–261 (1999)

    Google Scholar 

  25. Tang, X., Thomas, S., Amato, N.M.: Planning with reachable distances: Fast enforcement of closure constraints. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Roma, Italy, pp. 2694–2699 (2007)

    Google Scholar 

  26. Trinkle, J.C., Milgram, R.J.: Complete path planning for closed kinematic chains with spherical joints. Int. J. Robot. Res. 21(9), 773–789 (2002)

    Article  Google Scholar 

  27. Whitney, H.: Non-separable and planar graphs. Transactions of the American Mathematical Society 34, 339–362 (1932)

    Article  MathSciNet  Google Scholar 

  28. Whitney, H.: 2-isomorphic graphs. American Journal of Mathematics 55, 245–254 (1933)

    Article  MathSciNet  Google Scholar 

  29. Xie, D., Amato, N.M.: A kinematics-based probabilistic roadmap method for high DOF closed chain systems. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), New Orleans, LA, pp. 473–478 (2004)

    Google Scholar 

  30. Yakey, J.H., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages with closed kinematic chains. IEEE Trans. Robot. Automat. 17(6), 951–958 (2001)

    Article  Google Scholar 

  31. Yao, Z., Gupta, K.: Path planning with general end-effector constraints: using task space to guide configuration space search. In: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), Edmonton, Alberta, Canada, pp. 1875–1880 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, X., Thomas, S., Amato, N.M. (2009). Planning with Reachable Distances. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics