Skip to main content

A Motion Planner for Maintaining Landmark Visibility with a Differential Drive Robot

  • Chapter
Book cover Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

This work studies the interaction of the nonholonomic and visibility constraints of a robot that has to maintain visibility of a static landmark. The robot is a differential drive system and has a sensor with limited field of view. We determine the necessary and sufficient conditions for the existence of a path for our system to be able to maintain landmark visibility in the presence of obstacles. We present a complete motion planner that solves this problem based on a recursive subdivision of a path computed for a holonomic robot with the same visibility constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkcom, D., Mason, M.: Time optimal trajectories for bounded velocity differential drive vehicles. Int. J. of Robotics Research 21(3), 199–217 (2002)

    Article  Google Scholar 

  2. Bhattacharya, S., Murrieta-Cid, R., Hutchinson, S.: Optimal paths for landmark-based navigation by differential-drive vehicles with field-of-view constraints. IEEE Trans. on Robotics 23(1), 47–59 (2007)

    Article  Google Scholar 

  3. Briggs, A., Detweiler, C., Scharstein, D., Vandenberg-Rodes, A.: Expected shortest paths for landmark-based robot navigation. Int. J. of Robotics Research 8(12) (2004)

    Google Scholar 

  4. Chitsaz, H., LaValle, S., Balkcom, D., Mason, M.: Minimum wheel-rotation paths for differential-drive robots. In: IEEE Int. Conf. on Robotics and Automation (2006)

    Google Scholar 

  5. Choset, H., Lynch, K., Hutchinson, S., Cantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston (2005)

    MATH  Google Scholar 

  6. Hayet, J.B., Esteves, C., Murrieta-Cid, R.: Shortest paths for differential drive robots under visibility and sensor constraints. Technical Report I-09-02/24-02-2009, CIMAT (Submitted to IEEE-TRO, 2009), http://www.cimat.mx/~jbhayet/PUBLIS/Hayet-TR2009.pdf

  7. Hayet, J.B., Lerasle, F., Devy, M.: A visual landmark framework for mobile robot navigation. Image and Vision Computing 8(25), 1341–1351 (2007)

    Article  Google Scholar 

  8. Isler, V., Sun, D., Sastry, S.: Roadmap based pursuit-evasion and collision avoidance. Robot-Sci. Syst., 257–264 (2005)

    Google Scholar 

  9. Latombe, J.-C.: Robot motion planning. Kluwer, Dordrecht (1991)

    Google Scholar 

  10. Laumond, J.-P.: Robot motion planning and control. Springer, Heidelberg (1998)

    Book  Google Scholar 

  11. Laumond, J.-P., Jacobs, P.E., Taïx, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. on Robotics and Automation 10(5), 577–593 (1994)

    Article  Google Scholar 

  12. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  13. López-Nicolás, G., Bhattacharya, S., Guerrero, J., Sagüés, C., Hutchinson, S.: Switched homography-based visual control of differential drive vehicles with field-of-view constraints. In: Proc. of the IEEE Int. Conference on Robotics and Automation, pp. 4238–4244 (2007)

    Google Scholar 

  14. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pacific J. of Mathematics 145(2), 367–393 (1990)

    MathSciNet  Google Scholar 

  15. Salaris, P., Belo, F., Fontanelli, D., Greco, L., Bicchi, A.: Optimal paths in a constrained image plane for purely image-based parking. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1673–1680 (2008)

    Google Scholar 

  16. Souères, P., Laumond, J.-P.: Shortest paths synthesis for a car-like robot. IEEE Trans. on Automatic Control 41(5), 672–688 (1996)

    Article  MATH  Google Scholar 

  17. Thrun, S.: Bayesian landmark learning for mobile robot localization. Machine Learning 33(1) (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayet, JB., Esteves, C., Murrieta-Cid, R. (2009). A Motion Planner for Maintaining Landmark Visibility with a Differential Drive Robot. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics