Autophagy and Lymphocyte Homeostasis

  • Heather H. Pua
  • You-Wen HeEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 335)


Lymphocyte homeostasis is tightly regulated in vivo by various factors including cytokines, antigens, and costimulatory signals. Central to this regulation is the intricate balance between survival and apoptosis determined by pro- and antiapoptotic factors, including Bcl-2/Bcl-xL of the Bcl-2 family in the intrinsic death pathway and Fas/FADD of the TNF death receptor superfamily in the extrinsic death pathway. Recent studies have identified a critical role for autophagy, a well-conserved catabolic process in eukaryotic cells, in T and B lymphocyte homeostasis. Autophagy is essential for mature T lymphocyte survival and proliferation. In addition, autophagy can promote T cell death in defined physiologic or pathologic conditions. Autophagy also contributes to the survival of subsets of B lymphocytes, including developing pre-B cells as well as B1 B cells in vivo. Thus, autophagy represents a novel pathway regulating both developing and mature lymphocytes. Future studies are required to investigate the role of autophagy in regulating T and B cell homeostasis during immune responses to pathogens, as well as to define the mechanisms by which autophagy regulates lymphocyte death and survival.


Cell Homeostasis Autophagosome Formation Mitochondrial Content Autophagy Induction Autophagic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agenes F, Freitas AA (1999) Transfer of small resting B cells into immunodeficient hosts results in the selection of a self-renewing activated B cell population. J Exp Med 189:319–330PubMedCrossRefGoogle Scholar
  2. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336PubMedCrossRefGoogle Scholar
  3. Arsov I, Li X, Matthews G, Coradin J, Hartmann B, Simon AK, Sealfon SC, Yue Z (2008) BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ 15:1385–1395PubMedCrossRefGoogle Scholar
  4. Baba M, Takeshige K, Baba N, Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124:903–913PubMedCrossRefGoogle Scholar
  5. Badovinac VP, Harty JT (2006) Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol Rev 211:67–80PubMedCrossRefGoogle Scholar
  6. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510PubMedCrossRefGoogle Scholar
  7. Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74:1–6PubMedCrossRefGoogle Scholar
  8. Becker TC, Wherry EJ, Boone D, Murali-Krishna K, Antia R, Ma A, Ahmed R (2002) Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 195:1541–1548PubMedCrossRefGoogle Scholar
  9. Beisner DR, Chu IH, Arechiga AF, Hedrick SM, Walsh CM (2003) The requirements for Fas-associated death domain signaling in mature T cell activation and survival. J Immunol 171:247–256PubMedGoogle Scholar
  10. Bender J, Mitchell T, Kappler J, Marrack P (1999) CD4+ T cell division in irradiated mice requires peptides distinct from those responsible for thymic selection. J Exp Med 190:367–374PubMedCrossRefGoogle Scholar
  11. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148PubMedCrossRefGoogle Scholar
  12. Beutner U, MacDonald HR (1998) TCR-MHC class II interaction is required for peripheral expansion of CD4 cells in a T cell-deficient host. Int Immunol 10:305–310PubMedCrossRefGoogle Scholar
  13. Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195:657–664PubMedCrossRefGoogle Scholar
  14. Boise LH, Minn AJ, June CH, Lindsten T, Thompson CB (1995) Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division. Proc Natl Acad Sci USA 92:5491–5495PubMedCrossRefGoogle Scholar
  15. Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926PubMedCrossRefGoogle Scholar
  16. Brocker T (1997) Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J Exp Med 186:1223–1232PubMedCrossRefGoogle Scholar
  17. Broome HE, Dargan CM, Krajewski S, Reed JC (1995) Expression of Bcl-2, Bcl-x, and Bax after T cell activation and IL-2 withdrawal. J Immunol 155:2311–2317PubMedGoogle Scholar
  18. Cabatingan MS, Schmidt MR, Sen R, Woodland RT (2002) Naive B lymphocytes undergo homeostatic proliferation in response to B cell deficit. J Immunol 169:6795–6805PubMedGoogle Scholar
  19. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518PubMedCrossRefGoogle Scholar
  20. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW et al (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997PubMedCrossRefGoogle Scholar
  21. Corazza N, Brumatti G, Jakob S, Villunger A, Brunner T (2004) TRAIL and thymocyte apoptosis: not so deadly? Cell Death Differ 11(Suppl 2):S213–S215PubMedCrossRefGoogle Scholar
  22. Cretney E, Uldrich AP, Berzins SP, Strasser A, Godfrey DI, Smyth MJ (2003) Normal thymocyte negative selection in TRAIL-deficient mice. J Exp Med 198:491–496PubMedCrossRefGoogle Scholar
  23. Crowley JE, Scholz JL, Quinn Iii WJ, Stadanlick JE, Treml JF, Treml LS, Hao Y, Goenka R, O’Neill PJ, Matthews AHet al (2008) Homeostatic control of B lymphocyte subsets. Immunol Res 42:75–83PubMedCrossRefGoogle Scholar
  24. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  25. Diehl GE, Yue HH, Hsieh K, Kuang AA, Ho M, Morici LA, Lenz LL, Cado D, Riley LW, Winoto A (2004) TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21:877–889PubMedCrossRefGoogle Scholar
  26. Dorfman JR, Germain RN (2002) MHC-dependent survival of naive T cells? A complicated answer to a simple question. Microbes Infect 4:547–554PubMedCrossRefGoogle Scholar
  27. Dzhagalov I, Dunkle A, He YW (2008) The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J Immunol 181:521–528PubMedGoogle Scholar
  28. El Kassar N, Lucas PJ, Klug DB, Zamisch M, Merchant M, Bare CV, Choudhury B, Sharrow SO, Richie E, Mackall CL et al (2004) A dose effect of IL-7 on thymocyte development. Blood 104:1419–1427PubMedCrossRefGoogle Scholar
  29. Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. Faseb J 15:2286–2287PubMedGoogle Scholar
  30. Erickson SL, de Sauvage FJ, Kikly K, Carver-Moore K, Pitts-Meek S, Gillett N, Sheehan KC, Schreiber RD, Goeddel DV, Moore MW (1994) Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372:560–563PubMedCrossRefGoogle Scholar
  31. Ernst B, Lee DS, Chang JM, Sprent J, Surh CD (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11:173–181PubMedCrossRefGoogle Scholar
  32. Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 116:2161–2172PubMedCrossRefGoogle Scholar
  33. Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, Florea SM, Freud AG, Robinson ML, Durbin J, Caligiuri MA (2001) Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 193:219–231PubMedCrossRefGoogle Scholar
  34. Gerland LM, Genestier L, Peyrol S, Michallet MC, Hayette S, Urbanowicz I, Ffrench P, Magaud JP, Ffrench M (2004) Autolysosomes accumulate during in vitro CD8+ T-lymphocyte aging and may participate in induced death sensitization of senescent cells. Exp Gerontol 39:789–800CrossRefGoogle Scholar
  35. Goldrath AW, Bevan MJ (1999a) Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11:183–190PubMedCrossRefGoogle Scholar
  36. Goldrath AW, Bevan MJ (1999b) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262PubMedCrossRefGoogle Scholar
  37. Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, Mathis D, Butz EA (2002) Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195:1515–1522PubMedCrossRefGoogle Scholar
  38. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano Het al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  39. He YW, Malek TR (1998) The structure and function of gamma c-dependent cytokines and receptors: regulation of T lymphocyte development and homeostasis. Crit Rev Immunol 18:503–524PubMedGoogle Scholar
  40. Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P (2002) Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16:759–767PubMedCrossRefGoogle Scholar
  41. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto Ret al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205PubMedCrossRefGoogle Scholar
  42. Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P (2008) Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 28:197–205PubMedCrossRefGoogle Scholar
  43. Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2:547–556PubMedGoogle Scholar
  44. Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP (2005) CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434:88–93PubMedCrossRefGoogle Scholar
  45. Jia L, Dourmashkin RR, Allen PD, Gray AB, Newland AC, Kelsey SM (1997) Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol 98:673–685PubMedCrossRefGoogle Scholar
  46. Judge AD, Zhang X, Fujii H, Surh CD, Sprent J (2002) Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 196:935–946PubMedCrossRefGoogle Scholar
  47. Kassiotis G, Garcia S, Simpson E, Stockinger B (2002) Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 3:244–250PubMedCrossRefGoogle Scholar
  48. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CRet al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780PubMedCrossRefGoogle Scholar
  49. Kent G, Minick OT, Volini FI, Orfei E (1966) Autophagic vacuoles in human red cells. Am J Pathol 48:831–857PubMedGoogle Scholar
  50. Kieper WC, Tan JT, Bondi-Boyd B, Gapin L, Sprent J, Ceredig R, Surh CD (2002) Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J Exp Med 195:1533–1539PubMedCrossRefGoogle Scholar
  51. Kirberg J, Berns A, von Boehmer H (1997) Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med 186:1269–1275PubMedCrossRefGoogle Scholar
  52. Kishimoto H, Surh CD, Sprent J (1998) A role for Fas in negative selection of thymocytes in vivo. J Exp Med 187:1427–1438PubMedCrossRefGoogle Scholar
  53. Kissova I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N (2007) Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3:329–336PubMedGoogle Scholar
  54. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedCrossRefGoogle Scholar
  55. Knudson CM, Korsmeyer SJ (1997) Bcl-2 and Bax function independently to regulate cell death. Nat Genet 16:358–363PubMedCrossRefGoogle Scholar
  56. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270:96–99PubMedCrossRefGoogle Scholar
  57. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434PubMedCrossRefGoogle Scholar
  58. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884PubMedCrossRefGoogle Scholar
  59. Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM (2003) Interleukin 7 regulates the survival and generation of memory CD4 cells. J Exp Med 198:1797–1806PubMedCrossRefGoogle Scholar
  60. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMedCrossRefGoogle Scholar
  61. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen YH (2003) Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL–/– mice. Nat Immunol 4:255–260PubMedCrossRefGoogle Scholar
  62. Lau LL, Jamieson BD, Somasundaram T, Ahmed R (1994) Cytotoxic T-cell memory without antigen. Nature 369:648–652PubMedCrossRefGoogle Scholar
  63. Lenz DC, Kurz SK, Lemmens E, Schoenberger SP, Sprent J, Oldstone MB, Homann D (2004) IL-7 regulates basal homeostatic proliferation of antiviral CD4+ T cell memory. Proc Natl Acad Sci USA 101:9357–9362PubMedCrossRefGoogle Scholar
  64. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCrossRefGoogle Scholar
  65. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins SC, Jin S, Lu B (2006) Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol 177:5163–5168PubMedGoogle Scholar
  66. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CLet al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224PubMedCrossRefGoogle Scholar
  67. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596PubMedGoogle Scholar
  68. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676PubMedCrossRefGoogle Scholar
  69. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth Ket al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399PubMedCrossRefGoogle Scholar
  70. Linette GP, Li Y, Roth K, Korsmeyer SJ (1996) Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA 93:9545–9552PubMedCrossRefGoogle Scholar
  71. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676PubMedCrossRefGoogle Scholar
  72. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248PubMedCrossRefGoogle Scholar
  73. Maraskovsky E, O’Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1–/– mice. Cell 89:1011–1019PubMedCrossRefGoogle Scholar
  74. Marks-Konczalik J, Dubois S, Losi JM, Sabzevari H, Yamada N, Feigenbaum L, Waldmann TA, Tagaya Y (2000) IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 97:11445–11450PubMedCrossRefGoogle Scholar
  75. Marrack P, Bender J, Hildeman D, Jordan M, Mitchell T, Murakami M, Sakamoto A, Schaefer BC, Swanson B, Kappler J (2000) Homeostasis of alpha beta TCR+ T cells. Nat Immunol 1:107–111PubMedCrossRefGoogle Scholar
  76. Matsui M, Yamamoto A, Kuma A, Ohsumi Y, Mizushima N (2006) Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochem Biophys Res Commun 339:485–489PubMedCrossRefGoogle Scholar
  77. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922PubMedCrossRefGoogle Scholar
  78. Matsuzaki Y, Nakayama K, Tomita T, Isoda M, Loh DY, Nakauchi H (1997) Role of bcl-2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 89:853–862PubMedGoogle Scholar
  79. Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat Wet al (2008) The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4:309–314PubMedGoogle Scholar
  80. Miller RA, Stutman O (1984) T cell repopulation from functionally restricted splenic progenitors: 10,000-fold expansion documented by using limiting dilution analyses. J Immunol 133:2925–2932PubMedGoogle Scholar
  81. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429PubMedCrossRefGoogle Scholar
  82. Morrissey PJ, Conlon P, Charrier K, Braddy S, Alpert A, Williams D, Namen AE, Mochizuki D (1991) Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J Immunol 147:561–568PubMedGoogle Scholar
  83. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510PubMedCrossRefGoogle Scholar
  84. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177–187PubMedCrossRefGoogle Scholar
  85. Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286:1377–1381PubMedCrossRefGoogle Scholar
  86. Nakayama K, Nakayama K, Negishi I, Kuida K, Shinkai Y, Louie MC, Fields LE, Lucas PJ, Stewart V, Alt FWet al (1993) Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261:1584–1588PubMedCrossRefGoogle Scholar
  87. Nesic D, Vukmanovic S (1998) MHC class I is required for peripheral accumulation of CD8+ thymic emigrants. J Immunol 160:3705–3712PubMedGoogle Scholar
  88. Newton K, Harris AW, Bath ML, Smith KG, Strasser A (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 17:706–718PubMedCrossRefGoogle Scholar
  89. Newton K, Harris AW, Strasser A (2000) FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J 19:931–941PubMedCrossRefGoogle Scholar
  90. Newton K, Kurts C, Harris AW, Strasser A (2001) Effects of a dominant interfering mutant of FADD on signal transduction in activated T cells. Curr Biol 11:273–276PubMedCrossRefGoogle Scholar
  91. Nguyen LT, McKall-Faienza K, Zakarian A, Speiser DE, Mak TW, Ohashi PS (2000) TNF receptor 1 (TNFR1) and CD95 are not required for T cell deletion after virus infection but contribute to peptide-induced deletion under limited conditions. Eur J Immunol 30:683–688PubMedCrossRefGoogle Scholar
  92. Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656PubMedCrossRefGoogle Scholar
  93. Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426:671–676PubMedCrossRefGoogle Scholar
  94. Page DM (1999) Cutting edge: thymic selection and autoreactivity are regulated by multiple coreceptors involved in T cell activation. J Immunol 163:3577–3581PubMedGoogle Scholar
  95. Page DM, Roberts EM, Peschon JJ, Hedrick SM (1998) TNF receptor-deficient mice reveal striking differences between several models of thymocyte negative selection. J Immunol 160:120–133PubMedGoogle Scholar
  96. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939PubMedCrossRefGoogle Scholar
  97. Pellegrini M, Belz G, Bouillet P, Strasser A (2003) Shutdown of an acute T cell immune response to viral infection is mediated by the proapoptotic Bcl-2 homology 3-only protein Bim. Proc Natl Acad Sci USA 100:14175–14180PubMedCrossRefGoogle Scholar
  98. Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Kronke M, Mak TW (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L monocytogenes infection. Cell 73:457–467PubMedCrossRefGoogle Scholar
  99. Plas DR, Rathmell JC, Thompson CB (2002) Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol 3:515–521PubMedCrossRefGoogle Scholar
  100. Polic B, Kunkel D, Scheffold A, Rajewsky K (2001) How alpha beta T cells deal with induced TCR alpha ablation. Proc Natl Acad Sci USA 98:8744–8749PubMedCrossRefGoogle Scholar
  101. Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12:1613–1621PubMedCrossRefGoogle Scholar
  102. Pua HH, He YW (2007) Maintaining T lymphocyte homeostasis: another duty of autophagy. Autophagy 3:266–267PubMedGoogle Scholar
  103. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31PubMedCrossRefGoogle Scholar
  104. Pua HH, Komatsu M, He YW (2009) Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol 182:4046–4055PubMedCrossRefGoogle Scholar
  105. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JHet al (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729PubMedCrossRefGoogle Scholar
  106. Qing G, Yan P, Xiao G (2006) Hsp90 inhibition results in autophagy-mediated proteasome-independent degradation of IkappaB kinase (IKK). Cell Res 16:895–901PubMedCrossRefGoogle Scholar
  107. Qing G, Yan P, Qu Z, Liu H, Xiao G (2007) Hsp90 regulates processing of NF-kappaB2 p100 involving protection of NF-kappaB-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res 17:520–530PubMedCrossRefGoogle Scholar
  108. Rathmell JC, Farkash EA, Gao W, Thompson CB (2001) IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167:6869–6876PubMedGoogle Scholar
  109. Rathmell JC, Lindsten T, Zong WX, Cinalli RM, Thompson CB (2002) Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 3:932–939PubMedCrossRefGoogle Scholar
  110. Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15:1209–1216PubMedCrossRefGoogle Scholar
  111. Reich A, Korner H, Sedgwick JD, Pircher H (2000) Immune down-regulation and peripheral deletion of CD8 T cells does not require TNF receptor–ligand interactions nor CD95 (Fas, APO-1). Eur J Immunol 30:678–682PubMedCrossRefGoogle Scholar
  112. Reipert S, Berry J, Hughes MF, Hickman JA, Allen TD (1995) Changes of mitochondrial mass in the hemopoietic stem cell line FDCP-mix after treatment with etoposide: a correlative study by multiparameter flow cytometry and confocal and electron microscopy. Exp Cell Res 221:281–288PubMedCrossRefGoogle Scholar
  113. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2:39–46PubMedGoogle Scholar
  114. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235PubMedCrossRefGoogle Scholar
  115. Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432PubMedCrossRefGoogle Scholar
  116. Schmid D, Munz C (2007) Innate and adaptive immunity through autophagy. Immunity 27:11–21PubMedCrossRefGoogle Scholar
  117. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505PubMedCrossRefGoogle Scholar
  118. Seddon B, Zamoyska R (2002) TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J Immunol 169:3752–3759PubMedGoogle Scholar
  119. Seddon B, Tomlinson P, Zamoyska R (2003) Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol 4:680–686PubMedCrossRefGoogle Scholar
  120. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228PubMedCrossRefGoogle Scholar
  121. Sudo T, Nishikawa S, Ohno N, Akiyama N, Tamakoshi M, Yoshida H, Nishikawa S (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA 90:9125–9129PubMedCrossRefGoogle Scholar
  122. Swain SL, Hu H, Huston G (1999) Class II-independent generation of CD4 memory T cells from effectors. Science 286:1381–1383PubMedCrossRefGoogle Scholar
  123. Takano-Ohmuro H, Mukaida M, Kominami E, Morioka K (2000) Autophagy in embryonic erythroid cells: its role in maturation. Eur J Cell Biol 79:759–764PubMedCrossRefGoogle Scholar
  124. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203:1665–1670PubMedCrossRefGoogle Scholar
  125. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98:8732–8737PubMedCrossRefGoogle Scholar
  126. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 195:1523–1532PubMedCrossRefGoogle Scholar
  127. Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT (2003) Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38:863–876PubMedCrossRefGoogle Scholar
  128. Thorburn J, Moore F, Rao A, Barclay WW, Thomas LR, Grant KW, Cramer SD, Thorburn A (2005) Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell 16:1189–1199PubMedCrossRefGoogle Scholar
  129. Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349:275–280PubMedCrossRefGoogle Scholar
  130. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174PubMedCrossRefGoogle Scholar
  131. van Oers NS, Killeen N, Weiss A (1994) ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR zeta in murine thymocytes and lymph node T cells. Immunity 1:675–685PubMedCrossRefGoogle Scholar
  132. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240PubMedCrossRefGoogle Scholar
  133. Vella A, Teague TK, Ihle J, Kappler J, Marrack P (1997) Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4. J Exp Med 186:325–330PubMedCrossRefGoogle Scholar
  134. Villunger A, Marsden VS, Zhan Y, Erlacher M, Lew AM, Bouillet P, Berzins S, Godfrey DI, Heath WR, Strasser A (2004) Negative selection of semimature CD4(+)8(–)HSA+ thymocytes requires the BH3-only protein Bim but is independent of death receptor signaling. Proc Natl Acad Sci USA 101:7052–7057PubMedCrossRefGoogle Scholar
  135. Viret C, Wong FS, Janeway CA Jr (1999) Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10:559–568PubMedCrossRefGoogle Scholar
  136. Vivien L, Benoist C, Mathis D (2001) T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. Int Immunol 13:763–768PubMedCrossRefGoogle Scholar
  137. von Freeden-Jeffry U, Solvason N, Howard M, Murray R (1997) The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7:147–154PubMedCrossRefGoogle Scholar
  138. Walsh CM, Wen BG, Chinnaiyan AM, O’Rourke K, Dixit VM, Hedrick SM (1998) A role for FADD in T cell activation and development. Immunity 8:439–449PubMedCrossRefGoogle Scholar
  139. Wang EC, Thern A, Denzel A, Kitson J, Farrow SN, Owen MJ (2001) DR3 regulates negative selection during thymocyte development. Mol Cell Biol 21:3451–3461PubMedCrossRefGoogle Scholar
  140. Watanabe K, Ichinose S, Hayashizaki K, Tsubata T (2008) Induction of autophagy by B cell antigen receptor stimulation and its inhibition by costimulation. Biochem Biophys Res Commun 374:274–281PubMedCrossRefGoogle Scholar
  141. Weant AE, Michalek RD, Khan IU, Holbrook BC, Willingham MC, Grayson JM (2008) Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28:218–230PubMedCrossRefGoogle Scholar
  142. Witherden D, van Oers N, Waltzinger C, Weiss A, Benoist C, Mathis D (2000) Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules. J Exp Med 191:355–364PubMedCrossRefGoogle Scholar
  143. Wojciechowski S, Jordan MB, Zhu Y, White J, Zajac AJ, Hildeman DA (2006) Bim mediates apoptosis of CD127(lo) effector T cells and limits T cell memory. Eur J Immunol 36:1694–1706PubMedCrossRefGoogle Scholar
  144. Wullschleger S, Loewith R, Oppliger W, Hall MN (2005) Molecular organization of target of rapamycin complex 2. J Biol Chem 280:30697–30704PubMedCrossRefGoogle Scholar
  145. Yan P, Qing G, Qu Z, Wu CC, Rabson A, Xiao G (2007) Targeting autophagic regulation of NFkappaB in HTLV-I transformed cells by geldanamycin: implications for therapeutic interventions. Autophagy 3:600–603PubMedGoogle Scholar
  146. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502PubMedCrossRefGoogle Scholar
  147. Zhang J, Cado D, Chen A, Kabra NH, Winoto A (1998a) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:296–300PubMedCrossRefGoogle Scholar
  148. Zhang J, Kabra NH, Cado D, Kang C, Winoto A (2001) FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem 276:29815–29818PubMedCrossRefGoogle Scholar
  149. Zhang N, He YW (2005) The antiapoptotic protein Bcl-xL is dispensable for the development of effector and memory T lymphocytes. J Immunol 174:6967–6973PubMedGoogle Scholar
  150. Zhang N, Hartig H, Dzhagalov I, Draper D, He YW (2005a) The role of apoptosis in the development and function of T lymphocytes. Cell Res 15:749–769PubMedCrossRefGoogle Scholar
  151. Zhang X, Sun S, Hwang I, Tough DF, Sprent J (1998b) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591–599PubMedCrossRefGoogle Scholar
  152. Zhang Y, Rosenberg S, Wang H, Imtiyaz HZ, Hou YJ, Zhang J (2005b) Conditional Fas-associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis. J Immunol 175:3033–3044PubMedGoogle Scholar
  153. Zhou D, Spector SA (2008) Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS 22:695–699PubMedCrossRefGoogle Scholar
  154. Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations