Advertisement

Autophagy in HIV-Induced T Cell Death

  • Lucile Espert
  • Martine Biard-PiechaczykEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 335)

Abstract

HIV infection leads to progressive CD4 T cell depletion, resulting in the development of AIDS. The mechanisms that trigger T cell death after HIV infection are still not fully understood, but a lot of data indicate that apoptosis of uninfected CD4 lymphocytes plays a major role. HIV directly modulates cell death using various strategies in which several viral proteins, in particular the envelope glycoproteins (Env), play an essential role. Importantly, Env, expressed on infected cells, triggers autophagy in uninfected CD4 T cells, leading to their apoptosis. Furthermore, HIV, like other viruses, has evolved strategies to inhibit this autophagic process in HIV-infected cells. This discovery further increases the level of complexity of the cellular processes involved in HIV-induced pathology. Interestingly, HIV protease inhibitors, currently used in highly active antiretroviral therapy (HAART), are able to induce autophagy in cancer cells, leading to a recent repositioning of these drugs as anticancer agents. This review presents an overview of the relationship between HIV, HAART, and autophagy.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Acquire Immune Deficiency Syndrome Human Immunodeficiency Virus Protease Inhibitor Human Immunodeficiency Virus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Env

HIV envelope glycoproteins

HAART

Highly active antiretroviral therapy

KS

Kaposi’s sarcoma

PCD

Programmed cell death

PI

HIV protease inhibitor

Notes

Acknowledgments

Institutional funds from the Centre National de la Recherche Scientifique (CNRS) and the University of Montpellier, as well as grants from SIDACTION and the Agence Nationale de Recherches sur Le SIDA (ANRS) supported this work. We thank I. Robbins for helpful scientific discussions and careful critical reading of the manuscript.

References

  1. Agrawal L, Lu X, Jin Q, Alkhatib G (2006) Anti-HIV therapy: current and future directions.Curr Pharm Des 12:2031–55PubMedCrossRefGoogle Scholar
  2. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC-CKR5 : a RANTES, MIP-1a, MIP-1b receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958PubMedCrossRefGoogle Scholar
  3. Ameisen JC, Capron A (1991) Cell dysfunction and depletion in AIDS: the programmed cell death hypotheses. Immunol Today 12:102–105PubMedCrossRefGoogle Scholar
  4. Barré-Sinoussi F, Chermann J-C, Rey F, Nugeyre M-T, Chamaret S, Gruest J, Dauget C, Axler-Blin C, Brun-Vezinet F, Rouzioux C, Rozembaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from patient at risk for acquired immunodeficiency syndrome (AIDS). Science 220:868–870PubMedCrossRefGoogle Scholar
  5. Ben-Romano R, Rudich A, Tirosh A, Potashnik R, Sasaoka T, Riesenberg K, Schlaeffer F, Bashan N (2004) Nelfinavir-induced insulin resistance is associated with impaired plasma membrane recruitment of the PI 3-kinase effectors Akt/PKB and PKC-zeta. Diabetologia 47:1107–17PubMedCrossRefGoogle Scholar
  6. Blanco J, Barretina J, Ferri KF, Jacotot E, Gutierrez A, Armand-Ugon M, Cabrera C, Kroemer G, Clotet B, Este JA (2003) Cell-surface-expressed HIV-1 envelope induces the death of CD4 T cells during GP41-mediated hemifusion-like events. Virology 305:318–29PubMedCrossRefGoogle Scholar
  7. Bleul C, Wu LHJA, Springer TA, MacKay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differencially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94:1925–1930PubMedCrossRefGoogle Scholar
  8. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTRE/fusin and blocks HIV-1 entry. Nature 382:829–833PubMedCrossRefGoogle Scholar
  9. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162PubMedCrossRefGoogle Scholar
  10. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17(8):1595–1607PubMedCrossRefGoogle Scholar
  11. Butler IF, Pandrea I, Marx PA, Apetrei C (2007) HIV genetic diversity: biological and public health consequences. Curr HIV Res 5(1):23–45PubMedCrossRefGoogle Scholar
  12. Chun TW, Davey RT Jr, Ostrowski M, Shawn Justement J, Engel D, Mullins JI, Fauci AS (2000) Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med 6(7):757–761PubMedCrossRefGoogle Scholar
  13. Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF (1995) In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1(12):1284–1290PubMedCrossRefGoogle Scholar
  14. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS (1997) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A 94(24):13193–13197PubMedCrossRefGoogle Scholar
  15. Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, Natarajan V, Lempicki RA, Adelsberger JW, Miller KD, Kovacs JA, Polis MA, Walker RE, Falloon J, Masur H, Gee D, Baseler M, Dimitrov DS, Fauci AS, Lane HC (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci USA 96(26):15109–15114PubMedCrossRefGoogle Scholar
  16. Davis CB, Dikic I, Unutmaz D, Hill CM, Arthos J, Siani MA, Thompson DA, Schlessinger J, Littman DR (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 186(10):1793–1798PubMedCrossRefGoogle Scholar
  17. Debnath J, Baehrecke EH, Kroemer G (2005) Does autophagy contribute to cell death? Autophagy 1(2):e10–e18CrossRefGoogle Scholar
  18. Deeks SG, Walker BD (2004) The immune response to AIDS virus infection: good, bad, or both? J Clin Invest 113(6):808–810PubMedGoogle Scholar
  19. Deeks SG, Walker BD (2007) Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27(3):406–416PubMedCrossRefGoogle Scholar
  20. Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, Ornatowski W, Vergne I, Deretic V (2009) Autophagy and pattern recognition receptors in innate immunity. Immunol Rev 227(1):189–202PubMedCrossRefGoogle Scholar
  21. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102(22):7922–7927PubMedCrossRefGoogle Scholar
  22. Denizot M, Varbanov M, Espert L, Robert-Hebmann V, Sagnier S, Garcia E, Curriu M, Mamoun R, Blanco J, Biard-Piechaczyk M (2008) HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy 4(8):998–1008PubMedGoogle Scholar
  23. Deretic V (2005) Autophagy in innate and adaptive immunity. Trends Immunol 26(10):523–528PubMedCrossRefGoogle Scholar
  24. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281(41):30373–30382PubMedCrossRefGoogle Scholar
  25. Dunne M (2007) Antiretroviral drug development: the challenge of cost and access. Aids 21(Suppl 4):S73–79PubMedCrossRefGoogle Scholar
  26. Espert L, Codogno P, Biard-Piechaczyk M (2007) Involvement of autophagy in viral infections: antiviral function and subversion by viruses. J Mol Med 85(8):811–823PubMedCrossRefGoogle Scholar
  27. Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 116(8):2161–2172PubMedCrossRefGoogle Scholar
  28. Fauci AS (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239(4840):617–622PubMedCrossRefGoogle Scholar
  29. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor : functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877PubMedCrossRefGoogle Scholar
  30. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, Baba TW, Ruprecht RM, Kupfer A (1995) Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1(2):129–134PubMedCrossRefGoogle Scholar
  31. Finzi A, Orthwein A, Mercier J, Cohen EA (2007) Productive human immunodeficiency virus type 1 assembly takes place at the plasma membrane. J Virol 81(14):7476–7490PubMedCrossRefGoogle Scholar
  32. Frankel SS, Wenig BM, Burke AP, Mannan P, Thompson LD, Abbondanzo SL, Nelson AM, Pope M, Steinman RM (1996) Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272(5258):115–117PubMedCrossRefGoogle Scholar
  33. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, Kalyanaraman VS, Mann D, Sidhu GD, Stahl RE, Zolla-Pazner S, Leibowitch J, Popovic M (1983) Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220(4599):865–867PubMedCrossRefGoogle Scholar
  34. Garg H, Blumenthal R (2006) HIV gp41-induced apoptosis is mediated by caspase-3-dependent mitochondrial depolarization, which is inhibited by HIV protease inhibitor nelfinavir. J Leukoc Biol 79(2):351–362PubMedCrossRefGoogle Scholar
  35. Gendelman HE, Orenstein JM, Baca LM, Weiser B, Burger H, Kalter DC, Meltzer MS (1989) The macrophage in the persistence and pathogenesis of HIV infection. Aids 3(8):475–495PubMedCrossRefGoogle Scholar
  36. Gills JJ, Lopiccolo J, Dennis PA (2008a) Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths to autophagy. Autophagy 4(1):107–9PubMedGoogle Scholar
  37. Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, Abu-Asab MS, Borojerdi J, Warfel NA, Gardner ER, Danish M, Hollander MC, Kawabata S, Tsokos M, Figg WD, Steeg PS, Dennis PA (2007b) Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res 13(17):5183–5194PubMedCrossRefGoogle Scholar
  38. Gkrania-Klotsas E, Klotsas AE (2007) HIV and HIV treatment: effects on fats, glucose and lipids. Br Med Bull 84:49–68PubMedCrossRefGoogle Scholar
  39. Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118(Pt 14):3091–102PubMedCrossRefGoogle Scholar
  40. Goodenow MM, Collman RG (2006) HIV-1 coreceptor preference is distinct from target cell tropism: a dual-parameter nomenclature to define viral phenotypes. J Leukoc Biol 80(5):965–972PubMedCrossRefGoogle Scholar
  41. Grivel JC, Margolis LB (1999) CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat Med 5(3):344–346PubMedCrossRefGoogle Scholar
  42. Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RM, Paul WE (2002) CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat Med 8(4):319–323PubMedCrossRefGoogle Scholar
  43. Hammer SM, Saag MS, Schechter M, Montaner JS, Schooley RT, Jacobsen DM, Thompson MA, Carpenter CC, Fischl MA, Gazzard BG, Gatell JM, Hirsch MS, Katzenstein DA, Richman DD, Vella S, Yeni PG, Volberding PA (2006) Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society—USA panel. Top HIV Med 14(3):827–843PubMedGoogle Scholar
  44. Heinkelein M, Sopper S, Jassoy C (1995) Contact of human immunodeficiency virus type 1-infected and uninfected CD4+ T lymphocytes is highly cytolytic for both cells. J Virol 69(11):6925–6931PubMedGoogle Scholar
  45. Hisatomi T, Nakazawa T, Noda K, Almulki L, Miyahara S, Nakao S, Ito Y, She H, Kohno R, Michaud N, Ishibashi T, Hafezi-Moghadam A, Badley AD, Kroemer G, Miller JW (2008) HIV protease inhibitors provide neuroprotection through inhibition of mitochondrial apoptosis in mice. J Clin Invest 118(6):2025–2038PubMedGoogle Scholar
  46. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126PubMedCrossRefGoogle Scholar
  47. Jansen CA, van Baarle D, Miedema F (2006) HIV-specific CD4+ T cells and viremia: who’s in control? Trends Immunol 27(3):119–124PubMedCrossRefGoogle Scholar
  48. Katz RA, Greger JG, Skalka AM (2005) Effects of cell cycle status on early events in retroviral replication. J Cell Biochem 94(5):880–889PubMedCrossRefGoogle Scholar
  49. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726–734PubMedCrossRefGoogle Scholar
  50. LaBonte J, Lebbos J, Kirkpatrick P (2003) Enfuvirtide. Nat Rev Drug Discov 2(5):345–346PubMedCrossRefGoogle Scholar
  51. Langford SE, Ananworanich J, Cooper DA (2007) Predictors of disease progression in HIV infection: a review. AIDS Res Ther 4:11PubMedCrossRefGoogle Scholar
  52. Laurent-Crawford AG, Krust B, Riviere Y, Desgranges C, Muller S, Kieny MP, Dauguet C, Hovanessian AG (1993) Membrane expression of HIV envelope glycoproteins triggers apoptosis in CD4 cells. AIDS Res Hum Retroviruses 9(8):761–773PubMedCrossRefGoogle Scholar
  53. Lee HK, Iwasaki A (2008) Autophagy and antiviral immunity. Curr Opin Immunol 20(1):23–29PubMedCrossRefGoogle Scholar
  54. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315(5817):1398–1401PubMedCrossRefGoogle Scholar
  55. Leligdowicz A, Yindom LM, Onyango C, Sarge-Njie R, Alabi A, Cotten M, Vincent T, da Costa C, Aaby P, Jaye A, Dong T, McMichael A, Whittle H, Rowland-Jones S (2007) Robust Gag-specific T cell responses characterize viremia control in HIV-2 infection. J Clin Invest 117(10):3067–3074PubMedCrossRefGoogle Scholar
  56. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7(10):767–777PubMedCrossRefGoogle Scholar
  57. Levy JA (1993) Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 57(1):183–289PubMedGoogle Scholar
  58. Lifson JD, Feinberg MB, Reyes GR, Rabin L, Banapour B, Chakrabarti S, Moss B, Wong-Staal F, Steimer KS, Engleman EG (1986) Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323(6090):725–728PubMedCrossRefGoogle Scholar
  59. Liu R, Paxon WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377PubMedCrossRefGoogle Scholar
  60. Macias J, Palomares JC, Mira JA, Torres MJ, Garcia-Garcia JA, Rodriquez JM, Vergera S, Pineda JA (2005) Transient rebounds of HIV plasma viremia are associated with the emergence of drug resistance mutations in patients on highly active antiretroviral therapy. J Infect 51(3):195–200PubMedCrossRefGoogle Scholar
  61. Margolis L, Shattock R (2006) Selective transmission of CCR5-utilizing HIV-1: the ‘gatekeeper’ problem resolved? Nat Rev Microbiol 4(4):312–317PubMedCrossRefGoogle Scholar
  62. McCune JM (2001) The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410(6831):974–979PubMedCrossRefGoogle Scholar
  63. Misse D, Cerutti M, Noraz N, Jourdan P, Favero J, Devauchelle G, Yssel H, Taylor N, Veas F (1999) A CD4-independent interaction of human immunodeficiency virus-1 gp120 with CXCR4 induces their cointernalization, cell signaling, and T-cell chemotaxis. Blood 93(8):2454–2462PubMedGoogle Scholar
  64. Molina L, Grimaldi M, Robert-Hebmann V, Espert L, Varbanov M, Devaux C, Granier C, Biard-Piechaczyk M (2007) Proteomic analysis of the cellular responses induced in uninfected immune cells by cell-expressed X4 HIV-1 envelope. Proteomics 7(17):3116–3130PubMedCrossRefGoogle Scholar
  65. Monini P, Sgadari C, Toschi E, Barillari G, Ensoli B (2004) Antitumour effects of antiretroviral therapy. Nat Rev Cancer 4(11):861–875PubMedCrossRefGoogle Scholar
  66. Munoz-Barroso I, Durell S, Sakaguchi K, Appella E, Blumenthal R (1998) Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J Cell Biol 140(2):315–323PubMedCrossRefGoogle Scholar
  67. Murphy KM, Sweet MJ, Ross IL, Hume DA (1993) Effects of the tat and nef gene products of human immunodeficiency virus type 1 (HIV-1) on transcription controlled by the HIV-1 long terminal repeat and on cell growth in macrophages. J Virol 67(12):6956–6964PubMedGoogle Scholar
  68. Nair D (2005) Antiretroviral therapy-induced hyperlipidaemia. Int J STD AIDS 16(Suppl 1):2–10; discussion 10–13, 41–13PubMedCrossRefGoogle Scholar
  69. Navia BA, Cho ES, Petito CK, Price RW (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19(6):525–535Google Scholar
  70. Noursadeghi M, Katz DR, Miller RF (2006) HIV-1 infection of mononuclear phagocytic cells: the case for bacterial innate immune deficiency in AIDS. Lancet Infect Dis 6(12):794–804PubMedCrossRefGoogle Scholar
  71. Ohnimus H, Heinkelein M, Jassoy C (1997) Apoptotic cell death upon contact of CD4+ T lymphocytes with HIV glycoprotein-expressing cells is mediated by caspases but bypasses CD95 (Fas/Apo-1) and TNF receptor 1. J Immunol 159(11):5246–5252PubMedGoogle Scholar
  72. Orvedahl A, Levine B (2008) Eating the enemy within: autophagy in infectious diseases. Cell Death Differ 16(1):57–69PubMedCrossRefGoogle Scholar
  73. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307(5709):593–596PubMedCrossRefGoogle Scholar
  74. Pelchen-Matthews A, Kramer B, Marsh M (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162(3):443–455PubMedCrossRefGoogle Scholar
  75. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271(5255):1582–1586PubMedCrossRefGoogle Scholar
  76. Phenix BN, Angel JB, Mandy F, Kravcik S, Parato K, Chambers KA, Gallicano K, Hawley-Foss N, Cassol S, Cameron DW, Badley AD (2000) Decreased HIV-associated T cell apoptosis by HIV protease inhibitors. AIDS Res Hum Retroviruses 16(6):559–567PubMedCrossRefGoogle Scholar
  77. Piguet V, Sattentau Q (2004) Dangerous liaisons at the virological synapse. J Clin Invest 114(5):605–610PubMedGoogle Scholar
  78. Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224(4648):497–500PubMedCrossRefGoogle Scholar
  79. Pyrko P, Kardosh A, Wang W, Xiong W, Schonthal AH, Chen TC (2007) HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res 67(22):10920–10928PubMedCrossRefGoogle Scholar
  80. Raposo G, Moore M, Innes D, Leijendekker R, Leigh-Brown A, Benaroch P, Geuze H (2002) Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3(10):718–729PubMedCrossRefGoogle Scholar
  81. Roshal M, Zhu Y, Planelles V (2001) Apoptosis in AIDS. Apoptosis 6(1-2):103–116PubMedCrossRefGoogle Scholar
  82. Rowland-Jones SL, Whittle HC (2007) Out of Africa: what can we learn from HIV-2 about protective immunity to HIV-1? Nat Immunol 8(4):329–331PubMedCrossRefGoogle Scholar
  83. Samara C, Syntichaki P, Tavernarakis N (2007) Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 15(1):105–12PubMedCrossRefGoogle Scholar
  84. Samson M, Libert F, Doran BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Bourtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasien individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725PubMedCrossRefGoogle Scholar
  85. Schmid D, Dengjel J, Schoor O, Stevanovic S, Munz C (2006) Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med 84(3):194–202PubMedCrossRefGoogle Scholar
  86. Schmid D, Munz C (2007) Innate and adaptive immunity through autophagy. Immunity 27(1):11–21PubMedCrossRefGoogle Scholar
  87. Schutt M, Zhou J, Meier M, Klein HH (2004) Long-term effects of HIV-1 protease inhibitors on insulin secretion and insulin signaling in INS-1 beta cells. J Endocrinol 183(3):445–454PubMedCrossRefGoogle Scholar
  88. Seay MD, Dinesh-Kumar SP (2007) Autophagy takes its TOLL on innate immunity. Cell Host Microbe 2(2):69–70PubMedCrossRefGoogle Scholar
  89. Sgadari C, Barillari G, Toschi E, Carlei D, Bacigalupo I, Baccarini S, Palladino C, Leone P, Bugarini R, Malavasi L, Cafaro A, Falchi M, Valdembri D, Rezza G, Bussolino F, Monini P, Ensoli B (2002) HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med 8(3):225–232PubMedCrossRefGoogle Scholar
  90. Sgadari C, Monini P, Barillari G, Ensoli B (2003) Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth. Lancet Oncol 4(9):537–547PubMedCrossRefGoogle Scholar
  91. Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA (1986) Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322(6078):470–474PubMedCrossRefGoogle Scholar
  92. Stocker H, Scheller C, Jassoy C (2000) Destruction of primary CD4(+) T cells by cell-cell interaction in human immunodeficiency virus type 1 infection in vitro. J Gen Virol 81(Pt 8):1907–1911PubMedGoogle Scholar
  93. Suzuki Y, Craigie R (2007) The road to chromatin—nuclear entry of retroviruses. Nat Rev Microbiol 5(3):187–196PubMedCrossRefGoogle Scholar
  94. Swanson MS (2006) Autophagy: eating for good health. J Immunol 177(8):4945–4951PubMedGoogle Scholar
  95. Terai C, Kornbluth RS, Pauza CD, Richman DD, Carson DA (1991) Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J Clin Invest 87:1710–1715PubMedCrossRefGoogle Scholar
  96. Thorburn A (2007) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13(1):1–9CrossRefGoogle Scholar
  97. Varbanov M, Espert L, Biard-Piechaczyk M (2006) Mechanisms of CD4 T-cell depletion triggered by HIV-1 viral proteins. AIDS Rev 8(4):221–236PubMedGoogle Scholar
  98. Ventoso I, Navarro J, Munoz MA, Carrasco L (2005) Involvement of HIV-1 protease in virus-induced cell killing. Antiviral Res 66(1):47–55PubMedCrossRefGoogle Scholar
  99. Vlahakis SR, Bennett SA, Whitehead SN, Badley AD (2007) HIV protease inhibitors modulate apoptosis signaling in vitro and in vivo. Apoptosis 12(5):969–977PubMedCrossRefGoogle Scholar
  100. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122PubMedCrossRefGoogle Scholar
  101. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41 [see comments]. Nature 387(6631):426–430PubMedCrossRefGoogle Scholar
  102. Weissman D, Rabin RL, Arthos J, Rubbert A, Dybul M, Swofford R, Venkatesan S, Farber JM, Fauci AS (1997) Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389(6654):981–985PubMedCrossRefGoogle Scholar
  103. Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, Krausslich HG (2007) HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog 3(3):e36PubMedCrossRefGoogle Scholar
  104. Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ (1994) Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 91(21):9770–9774PubMedCrossRefGoogle Scholar
  105. Yoffe B, Lewis DE, Petrie BL, Noonan CA, Melnick JL, Hollinger FB (1987) Fusion as a mediator of cytolysis in mixtures of uninfected CD4+ lymphocytes and cells infected by human immunodeficiency virus. Proc Natl Acad Sci USA 84:1429–1433PubMedCrossRefGoogle Scholar
  106. Zamborlini A, Lehmann-Che J, Clave E, Giron ML, Tobaly-Tapiero J, Roingeard P, Emiliani S, Toubert A, de The H, Saib A (2007) Centrosomal pre-integration latency of HIV-1 in quiescent cells. Retrovirology 4:63PubMedCrossRefGoogle Scholar
  107. Zhou D, Spector SA (2008) Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS 22(6):695–699PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.CPBS, CNRS UMR5236, University of Montpellier, Institut de BiologieMontpellier Cedex 2France

Personalised recommendations