Autophagy in Immunity Against Toxoplasma gondii

  • Carlos S. SubausteEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 335)


A decisive outcome during host-pathogen interaction is governed by whether pathogen-containing vacuoles fuse with lysosomes. Fusion with lysosomes typically kills microbes. Toxoplasma gondii represents a classical example of an intracellular pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the vacuoles that contain the pathogen. Thus, T. gondii provides an excellent model to determine if the immune system can target a pathogen for lysosomal degradation. CD40, a major regulator of cell-mediated immunity, activates macrophages to kill T. gondii through a process that requires recruitment of autophagosomes around the parasitophorous vacuole, leading to lysosomal degradation of the parasite. These studies demonstrate that cell-mediated immunity can activate autophagy to kill a pathogen. CD40-induced autophagy likely contributes to resistance against T. gondii, particularly in neural tissues, the main sites affected by this pathogen.


Lysosomal Degradation Parasitophorous Vacuole Lysosomal Compartment Tissue Cyst Francisella Tularensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The original work by the author was supported by the National Institutes of Health, the American Heart Association (Ohio Valley Affiliate), the Juvenile Diabetes Research Foundation International, the Research to Prevent Blindness Foundation and the Ohio Lions Eye Research Foundation.


  1. Andrade RM, Wessendarp M, Subauste CS (2003) CD154 activates macrophage anti-microbial activity in the absence of IFN-γ through a TNF-α-dependent mechanism. J Immunol 171:6750–6756PubMedGoogle Scholar
  2. Andrade RM, Portillo J-AC, Wessendarp M, Subauste CS (2005a) CD40 signaling in macrophages induces anti-microbial activity against an intracellular pathogen independently of IFN-γ and reactive nitrogen intermediates. Infect Immun 73:3115–3123CrossRefPubMedGoogle Scholar
  3. Andrade RM, Wessendarp M, Portillo J-AC, Yang J-Q, Gomez FJ, Durbin JE, Bishop GA, Subauste CS (2005b) TRAF6 signaling downstream of CD40 primes macrophages to acquire anti-microbial activity in response to TNF-α. J Immunol 175:6014–6021PubMedGoogle Scholar
  4. Andrade RM, Wessendarp M, Gubbels MJ, Striepen B, Subauste CS (2006) CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin Invest 116:2366–2377CrossRefPubMedGoogle Scholar
  5. Archbarou A, Mercereau-Puijalon O, Sadak A, Fortier B, Leriche MA, Camus D, Dubremetz JF (1991) Differential targeting of dense granule proteins in the parasitophorous vacuole of Toxoplasma gondii. Parasitology 103:321–329CrossRefGoogle Scholar
  6. Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92CrossRefPubMedGoogle Scholar
  7. Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281:11374–11383CrossRefPubMedGoogle Scholar
  8. Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ (2007) TRAF proteins in CD40 signaling. Adv Exp Med Biol 597:131–151CrossRefPubMedGoogle Scholar
  9. Carruthers VB, Boothroyd JC (2007) Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 10:83–89CrossRefPubMedGoogle Scholar
  10. Carruthers VB, Sibley D (1997) Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73:114–123PubMedGoogle Scholar
  11. Cesbron-Delauw MF (1994) Dense-granule organelles of Toxoplasma gondii: their role in the host-parasite relationship. Parasitol Today 10:293–296CrossRefPubMedGoogle Scholar
  12. Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 103:14578–14583CrossRefPubMedGoogle Scholar
  13. Collazo CM, Yap GS, Sempowski GD, Lusby KC, Tessarollo L, Vande Woude GF, Sher A, Taylor GA (2001) Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 194:181–187CrossRefPubMedGoogle Scholar
  14. Collazo CM, Yap G, Hieny S, Caspar P, Feng CG, Taylor GA, Sher A (2002) The function of gamma interferon-inducible GTP-binding protein IGTP in host resistance to Toxoplasma gondii is Stat1 dependent and requires expression in both hematopoietic and nonhematopoietic cellular compartments. Infect Immun 70:6933–6939CrossRefPubMedGoogle Scholar
  15. Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC, Joiner KA (2006) Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125:261–274CrossRefPubMedGoogle Scholar
  16. Deckert-Schluter M, Bluethmann H, Rang A, Hof H, Schluter D (1998) Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol 160:3427–3436PubMedGoogle Scholar
  17. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382CrossRefPubMedGoogle Scholar
  18. Dunn WAJ (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 110:1923–1933Google Scholar
  19. Durandy A, de Saint Basile G, Lisowska-Grospierre B, Gauchat JF, Forveille M, Kroczek RA, Bonnefoy JY, Fischer A (1995) Undetectable CD40 ligand expression on T cells and low B cell responses to CD40 binding agonists in human newborns. J Immunol 154:1560–1568PubMedGoogle Scholar
  20. Gavrielescu LC, Butcher BA, del Rio L, Taylor GA, Denkers EY (2004) STAT1 is essential for antimicrobial effector function but dispensable for gamma interferon production during Toxoplasma gondii infection. Infect Immun 72:1257–1264CrossRefGoogle Scholar
  21. Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A (1991) Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-γ production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 146:286–292PubMedGoogle Scholar
  22. Gazzinelli RT, Eltoum I, Wynn TA, Sher A (1993) Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-α and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol 151:3672–3681PubMedGoogle Scholar
  23. Gazzinelli RT, Brezin A, Li Q, Nussenblatt RB, Chan CC (1994) Toxoplasma gondii: acquired ocular toxoplasmosis in the murine model, protective role of TNF-α and IFN-γ. Exp Parasitol 78:217–229CrossRefPubMedGoogle Scholar
  24. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MC, Deretic V (2004) Autophagy is defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766CrossRefPubMedGoogle Scholar
  25. Hakansson S, Charron AJ, Sibley LD (2001) Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J 20:3132–3144CrossRefPubMedGoogle Scholar
  26. Han P, McDonald T, Hodge G (2004) Potential immaturity of the T-cell and antigen-presenting cell interaction in cord blood with particular emphasis on the CD40-CD40 ligand costimulatory pathway. Immunology 113:26–34CrossRefPubMedGoogle Scholar
  27. Hayashi S, Chan C-C, Gazzinelli RT, Pham NTH, Cheung MK, Roberge FG (1996a) Protective role of nitric oxide in ocular toxoplasmosis. Br J Ophthalmol 80:644–648CrossRefPubMedGoogle Scholar
  28. Hayashi S, Chan CC, Gazzinelli R, Roberge FG (1996b) Contribution of nitric oxide to the host parasite equilibrium in toxoplasmosis. J Immunol 156:1476–1481PubMedGoogle Scholar
  29. Ishida TK, Mizushima SI, Azuma S, Kobayashi N, Tojo T, Suzuki K, Aizawa S, Watanabe T, Mosialos G, Kieff E, Yamamoto T, Inoue J (1996) Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 271:28745–28748CrossRefPubMedGoogle Scholar
  30. Israelski DM, Remington JS (1993) Toxoplasmosis in the non-AIDS immunocompromised host. Curr Clin Top Infect Dis 13:322–356PubMedGoogle Scholar
  31. Janssen R, van Wengen A, Verhard E, de Boer T, Zomerdijk T, Ottenhoff THM, van Dissel JT (2002) Divergent role for TNF-α in IFN-γ-induced killing of Toxoplasma gondii and Salmonella typhimurium contributes to selective susceptibility of patients with partial IFN-γ receptor 1 deficiency. J Immunol 169:3900–3907PubMedGoogle Scholar
  32. Joiner KA, Fuhrman SA, Mietinnen H, Kasper LH, Mellman I (1990) Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor transfected fibroblasts. Science 249:641–646CrossRefPubMedGoogle Scholar
  33. Joiner KA, Roos DS (2002) Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J Cell Biol 157:557–563CrossRefPubMedGoogle Scholar
  34. Julien P, Cron RQ, Dabbagh K, Cleary A, Chen L, Tran P, Stepick-Biek P, Lewis DB (2003) Decreased CD154 expression by neonatal CD4+ T cells is due to limitations in both proximal and distal events of T cell activation. Int Immunol 15:1461–1472CrossRefGoogle Scholar
  35. Kaur K, Chowdhury S, Greenspan NS, Schreiber JR (2007) Decreased expression of tumor necrosis factor family receptors involved in humoral immune responses in preterm neonates. Blood 110:2948–2954CrossRefPubMedGoogle Scholar
  36. Kravetz JD, Federman DG (2005) Toxoplasmosis in pregnancy. Am J Med 118:212–216CrossRefPubMedGoogle Scholar
  37. Kroncke KD, Fehsel K, Kolb-Bachofen V (1998) Inducible nitric oxide synthase in human disease. Clin Exp Immunol 113:147–156CrossRefPubMedGoogle Scholar
  38. Leiva LE, Junprasert J, Hollenbaugh D, Sorensen RU (1998) Central nervous system toxoplasmosis with an increased proportion of circulating γδ T cells in a patient with hyper IgM syndrome. J Clin Immunol 18:283–290CrossRefPubMedGoogle Scholar
  39. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477CrossRefPubMedGoogle Scholar
  40. Lieberman LA, Banica M, Reiner SL, Hunter CA (2004) STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. J Immunol 172:457–463PubMedGoogle Scholar
  41. Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA, Ferguson DJP, Yap G (2006) Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 203:2063–2071CrossRefPubMedGoogle Scholar
  42. Lingelbach K, Joiner KA (1998) The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J Cell Sci 111:1467–1475PubMedGoogle Scholar
  43. Lu LF, Cook WJ, Lin LL, Noelle RJ (2003) CD40 signaling through a newly identified tumor necrosis factor receptor-associated factor 2 (TRAF2) binding site. J Biol Chem 278:45414–45418CrossRefPubMedGoogle Scholar
  44. Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, Reichmann G, Howard JC (2005) Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathogens 1:187–201CrossRefGoogle Scholar
  45. Martin AM, Liu T, Lynn BC, Sinai AP (2007) The Toxoplasma gondii parasitophorous vacuole membrane: transactions across the border. J Eukaryot Microbiol 54:25–28CrossRefPubMedGoogle Scholar
  46. McCannel CA, Holland GN, Helm CJ, et al (1996) Causes of uveitis in the general practice of ophthalmology. Am J Ophthalmol 121:35–46PubMedGoogle Scholar
  47. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429CrossRefPubMedGoogle Scholar
  48. Montoya JG, Kovacs JA, Remington JS (2005) Toxoplasma gondii. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases. Elsevier Churchill Livingstone, Philadelphia, pp 3170–3198Google Scholar
  49. Mordue DG, Sibley LD (1997) Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanisms of entry. J Immunol 159:4452–4459PubMedGoogle Scholar
  50. Mukundan L, Bishop GA, Head KZ, Zhang L, Wahl L, Suttles J (2005) TNF receptor-associated factor 6 is an essential mediator of CD40-activated proinflammatory pathways in monocytes and macrophages. J Immunol 174:1081–1090PubMedGoogle Scholar
  51. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading Group A Streptococcus. Science 306:1037–1040CrossRefPubMedGoogle Scholar
  52. Navia BA, Petito CK, Gold JW, Cho ES, Jordan BD, Price RW (1986) Cerebral toxoplasmosis complicating the acquired immune deficiency syndrome: clinical and neuropathological findings in 27 patients. Ann Neurol 19:224–238CrossRefPubMedGoogle Scholar
  53. Nonoyama S, Penix LA, Edwards CP Lewis D, Ito S, Aruffo A, Wilson CB, Ochs HD (1995) Diminished expression of CD40 ligand by activated neonatal T cells. J Clin Invest 95:66–75CrossRefPubMedGoogle Scholar
  54. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2004) Escape of intracellular Shigella from autophagy. Science 307:727–731CrossRefPubMedGoogle Scholar
  55. Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35CrossRefPubMedGoogle Scholar
  56. Pullen SS, Miller HG, Everdeen DS, Dang TT, Crute JJ, Kehry MR (1998) CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 37:11836–11845CrossRefPubMedGoogle Scholar
  57. Reichmann G, Walker W, Villegas EN, Craig L, Cai G, Alexander J, Hunter CA (2000) The CD40/CD40 ligand interaction is required for resistance to toxoplasmic encephalitis. Infect Immun 68:1312–1318CrossRefPubMedGoogle Scholar
  58. Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5:455–468CrossRefPubMedGoogle Scholar
  59. Robben PM, LaRegina M, Kuziel WA, Sibley LD (2005) Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med 201:1761–1769CrossRefPubMedGoogle Scholar
  60. Roberts F, Roberts CW, Ferguson DJP, McLeod R (2000) Inhibition of nitric oxide production exacerbates chronic ocular toxoplasmosis. Parasite Immunol 22:1–5CrossRefPubMedGoogle Scholar
  61. Scharton-Kersten T, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 185:1261–1273CrossRefPubMedGoogle Scholar
  62. Schluter D, Lohler J, Deckert M, Hof H, Schwendemann G (1991) Toxoplasma encephalitis of immunocompetent and nude mice: immunohistochemical characterisation of Toxoplasma antigen, infiltrates and major histocompatibility complex gene products. J Neuroimmunol 31:185–198CrossRefPubMedGoogle Scholar
  63. Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441CrossRefPubMedGoogle Scholar
  64. Subauste CS, Wessendarp M (2000) Human dendritic cells discriminate between viable and killed Toxoplasma gondii tachyzoites: Dendritic cell activation after infection with viable parasites results in CD28 and CD40 ligand signaling that controls IL-12-dependent and -independent T cell production of IFN-γ. J Immunol 165:1498–1505PubMedGoogle Scholar
  65. Subauste CS, Wessendarp M (2006) CD40 restrains the in vivo growth of Toxoplasma gondii independently of gamma interferon. Infect Immun 74:1573–1579CrossRefPubMedGoogle Scholar
  66. Subauste CS, Wessendarp M, Sorensen RU, Leiva L (1999) CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type-1 immune response which can be restored by soluble CD40L trimer. J Immunol 162:6690–6700PubMedGoogle Scholar
  67. Subauste CS, Wessendarp M, Smulian AG, Frame PT (2001) Role of CD40 ligand signaling in defective type-1 cytokine response in HIV infection. J Infect Dis 183:1722–1731CrossRefPubMedGoogle Scholar
  68. Subauste CS, Wessendarp M, Portillo J-AC, Andrade RM, Hinds LM, Gomez FJ, Smulian AG, Grubbs PA, Haglund LA (2004) Pathogen-specific induction of CD154 is impaired in CD4+ T cells from HIV-infected individuals. J Infect Dis 189:61–70CrossRefPubMedGoogle Scholar
  69. Subauste CS, Andrade RM, Wessendarp M (2007a) CD40-TRAF6 and autophagy-dependent anti-microbial activity in macrophages. Autophagy 3:245–248PubMedGoogle Scholar
  70. Subauste CS, Subauste A, Wessendarp M (2007b) Role of CD40-dependent down-regulation of CD154 in impaired induction of CD154 in CD4+ T cells from HIV-1-infected patients. J Immunol 178:1645–1653PubMedGoogle Scholar
  71. Suzuki Y, Orellana MA, Schreiber RD, Remington JS (1988) Interferon-γ: the major mediator of resistance against Toxoplasma gondii. Science 240:516–518CrossRefPubMedGoogle Scholar
  72. Suzuki Y, Conley FK, Remington JS (1989) Importance of endogenous IFN-γ for prevention of toxoplasmic encephalitis in mice. J Immunol 143:2045–2050PubMedGoogle Scholar
  73. Talloczy Z, Jiang W, Virgin HW, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B (2002) Regulation of starvation- and virus-induced autophagy by the eIF2α signaling pathway. Proc Natl Acad Sci USA 99:190–195CrossRefPubMedGoogle Scholar
  74. van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leuk Biol 67:2–17Google Scholar
  75. Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, Yoshimori T, Kurata S (2008) Autophagic control of Listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9:908–916CrossRefPubMedGoogle Scholar
  76. Yap GS, Scharton-Kersten T, Charest H, Sher A (1998) Decreased resistance of TNF receptor p55- and p75-deficient mice to chronic toxoplasmosis despite normal activation of inducible nitric oxide synthase in vivo. J Immunol 160:1340–1345PubMedGoogle Scholar
  77. Zhang R, Fichtenbaum CJ, Hildeman DA, Lifson JD, Chougnet C (2004) CD40 ligand dysregulation in HIV: HIV glycoprotein 120 inhibits signaling cascades upstream of CD40 ligand transcription. J Immunol 172:2678–2686PubMedGoogle Scholar
  78. Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, Miller BC, Cadwell K, Delgado MA, Ponpuak M, Green KG, Schmidt RE, Mizushima N, Deretic V, Sibley LD, Virgin HW (2008) Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4:458–469CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Department of Medicine, Division of Infectious Diseases and HIV MedicineCase Western Reserve University School of MedicineClevelandUSA
  3. 3.Department of PathologyCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations