Urban Soil-Canopy-Atmosphere Exchanges at Submesoscales: Learning from Model Development, Evaluation, and Coupling with LES

Chapter

Abstract

The Soil Model for Sub-Mesoscales Urban version (SM2U) can be used as a stand-alone urban climatology model or as a boundary conditioning model in atmospheric codes. It is presented here by pointing out the specific parameterizations which make it differ from classical surface energy budget models. This paper relates the experience gained by performing validation exercises in documented meteorological situations for both the hydric and the thermal parts of the model, and sensitivity studies aimed at disclosing the relative efficiency of the different parameterizations (wall conduction, radiative trapping…). The SM2U model is then shown a very useful tool for small-scale climatology mainly due to the coupled computation of water and energy budgets. The atmospheric response to the SM2U ground forcing is also evaluated when coupled with a LES model, for different description modes of a coastal city. The heterogeneity of the districts and a fine description of the city are shown very important in the realistic assessment of the atmospheric lower layers, even in very complex situations including orography and sea influences.

Keywords

Atmospheric Boundary Layer Canopy Temperature Surface Energy Budget Building Wall Thermal Internal Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baklanov, A. and P. Mestayer (eds.), 2004: Improved parameterisations of urban atmospheric sublayer and urban physiographic data classification. / A. Baklanov, E. Batchvarova, I. Calmet, A. Clappier, J.V. Chordá, J.J. Diéguez, S. Dupont, B. Fay, E. Fragkou, R. Hamdi, N. Kitwiroon, S. Leroyer, N. Long, A. Mahura, P. Mestayer, N.W. Nielsen, J.L. Palau, G. Pérez-Landa, T. Penelon, M. Rantamäki, G. Schayes and R.S. Sokhi. D4.1, 4.2 and 4.5 FUMAPEX Report, April 2004, Copenhagen, DMI, Denmark. DMI Scientific Report: #04-05, ISBN nr. 87-7478-506-0.Google Scholar
  2. Baklanov, A. (ed.), B. Amstrup, A. Belivier, N. Bjergene, I. Calmet, A. Clappier, A. Coppalle, S. Dupont, R. Hamdi, B. Fay, S. Leroyer, N. Long, A. Mahura, P. Mestayer, L. Neunhäuserer, N.W. Nielsen, V. Ødegaard, J.-L. Palau, G. Pérez-Land, C. Petersen, C. Philippe, M. Rotach, K. Sattler, G. Schayes, R. Sokhi, Y. Yu, and S. Zilitinkevich, 2005: Integrated and validated NWP systems incorporating urban improvements. FUMAPEX M4.4 Report. DMI Sci. Report.124 p.Google Scholar
  3. Baklanov, A., P.G. Mestayer, A. Clappier, S. Zilitinkevich, S. Joffre, A. Mahura, and N.W. Nielsen, 2008: Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description, Atmos. Chem. Phys., 8, 523–543.CrossRefGoogle Scholar
  4. Berthier, E., S. Dupont, P.G. Mestayer, and H. Andrieu, 2006: Comparison of two evapotranspiration schemes on a sub-urban site. J. of Hydrol. 328, 635–646.CrossRefGoogle Scholar
  5. Bornstein, R., R. Balmori, H. Taha, D. Byun, B. Cheng, J. Nielsen-Gammon, S. Burian, S. Stetson, M. Estes, D. Nowak, and P. Smith, 2006: Modeling the effects of land-use land-cover modifications on the urban heat island phenomena in Houston, Texas. SJSU Final Report to Houston Advanced Research Center for Project No. R-04-0055, 127 pp.Google Scholar
  6. Bottema, M., 1996: Roughness parameters over regular rough surfaces: Experimental requirements and model validation. J. Wind Eng. Ind. Aerodyn., 64, 249–265.CrossRefGoogle Scholar
  7. Bottema, M., 1997: Urban roughness modelling in relation to pollutant dispersion, Atmos. Environ., 31, 3059–3075.CrossRefGoogle Scholar
  8. Bottema, M. and P.G. Mestayer, 1998: Urban roughness mapping – validation techniques and some first results, J. Wind Eng. Ind. Aerodyn., 74–76, 163–173.CrossRefGoogle Scholar
  9. Chen, F., M. Tewari, H. Kusaka, and T.L. Warner, 2006: Current status of urban modeling in the community Weather Research and Forecast (WRF) model. Sixth AMS Symposium on the Urban Environment, Atlanta GA, January 2006.Google Scholar
  10. Dupont, S., 2001: Modélisation dynamique et thermodynamique de la canopée urbaine: réalisation du modèle de sols urbains pour Submeso, Doctoral thesis, University of Nantes, France.Google Scholar
  11. Dupont, S. and P.G. Mestayer, 2006: Parameterisation of the urban energy budget with the submesoscale soil model, J. Appl. Meteorol. Climatol., 45(12), 1744–1765.CrossRefGoogle Scholar
  12. Dupont, S., T.L. Otte, and J.K.S. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model (MM5), Bound. Layer Meteorol., 113, 111–158.CrossRefGoogle Scholar
  13. Dupont, S., P.G. Mestayer, E. Guilloteau, E. Berthier and H. Andrieu, 2006: Parameterisation of the urban water budget with the submesoscale soil model, J. Appl. Meteorol. Climatol., 45(4), 624–648.CrossRefGoogle Scholar
  14. Grimmond C.S.B, J.A Salmond, T.R. Oke, B. Offerle, and A. Lemonsu, 2004: Flux and turbulence measurements at a dense urban site in Marseille: heat, mass (water, carbon dioxide) and Momentum. JGR Atmospheres, 109, D24, D24101, 19 pp. DOI:10.1029/2004JD004936Google Scholar
  15. Guilloteau, E., 1998: Optimized computation of transfer coefficients in surface layer with different momentum and heat roughness lengths, Bound. Layer Meteorol., 87, 147–160.CrossRefGoogle Scholar
  16. Guilloteau, E., 1999: Modélisation des sols urbains pour les simulations de l’atmosphère aux échelles sub-meso. Doctoral thesis, University of Nantes and Ecole Centrale de Nantes, France.Google Scholar
  17. Guilloteau, E., and S. Dupont, 2000: A new modeling of heat exchanges between urban soil and atmosphere, Surface energy balance in urban areas, COST Action 715 Expert meeting, 12 April 2000, Antwerp, Belgium. Proceedings EUR 19447, M. Piringer edit., European Commission DG Environnement, Bruxelles, Belgium, pp. 76–91, 2000.Google Scholar
  18. Leroyer, S., 2006: Simulations numériques de l’atmosphère urbaine avec le modèle SUBMESO: application à la campagne CLU-Escompte sur l’agglomération de Marseille. Doctoral thesis, Ecole Centrale de Nantes and University of Nantes, France.Google Scholar
  19. Leroyer, S., I. Calmet, and P. Mestayer, 2009: Urban boundary layer simulations of sea-breeze over Marseille during the ESCOMPTE experiment, Int. J. Environment and Pollution (to appear).Google Scholar
  20. Leroyer, S., I. Calmet, and P. Mestayer, 2006: Airflow analysis over the city of Marseille: Breezes interactions and impact of the city representation in the models, Proc. 6th International Conference on the Urban Climatology ICUC 6, Göteborg, Sweden, 12–16 June. pp. 148–151.Google Scholar
  21. Liu, W.T., K.B. Katsaros, and J.A. Businger, 1979: Bulk parameterization of Air-Sea exchanges of heat and water vapor including the molecular constraints at the interface, J. Atmos. Sci., 36, 1722–1734.CrossRefGoogle Scholar
  22. Long, N., 2003: Analyses morphologiques et aérodynamiques du tissu urbain: application à la micro climatologie de Marseille pendant la campagne Escompte, Doctoral thesis, University of Sciences and Technics of Lille, France.Google Scholar
  23. Long, N. and C. Kergomard, 2005: Classification morphologique du tissus urbain pour des applications climatologiques; Cas de Marseille, Revue Internationale de Géomatique, 15, 487-512.CrossRefGoogle Scholar
  24. Mahura, A., S. Leroyer, P. Mestayer, I. Calmet, S. Dupont, N. Long, A. Baklanov, C. Petersen, K. Sattler, and N.W. Nielsen, 2005: Large eddy simulation of urban features for Copenhagen metropolitan area, Atmos. Chem. Phys. Discuss., 5, 11183–11213.CrossRefGoogle Scholar
  25. Mestayer, P.G. and M. Bottema, 2002: Parameterisation for roughness parameters in urban areas. In: Rotach M., Fisher B., Piringer M. (Eds.), COST Action 715 Workshop on Urban Boundary Layer Parameterisations (Zurich, 24–25 May 2001). Office for Official Publications of the European Communities, EUR 20355, pp. 51–61.Google Scholar
  26. Mestayer, P., N. Long, and A. Mahura, 2004: Parameterizations for roughness parameters in urban areas. In: Baklanov A. (Ed.), Improved Models for Computing the Roughness Parameters of Urban Areas,. D4.4 FUMAPEX Report, DMI Scientific Report, ISBN: 87-7478-495-1, 11–22.Google Scholar
  27. Mestayer, P.G., P. Durand, P. Augustin, S. Bastin, J.-M. Bonnefond, B. Bénech, B. Campistron, A. Coppalle, H. Delbarre, B. Dousset, P. Drobinski, A. Druilhet, E. Fréjafon, S. Grimmond, D. Groleau, M. Irvine, C. Kergomard, S. Kermadi, J.-P. Lagouarde, A. Lemonsu, F. Lohou, N. Long, V. Masson, C. Moppert, J. Noilhan, B. Offerle, T. Oke, G. Pigeon, V. Puygrenier, S. Roberts, J.-M. Rosant, F. Saïd, J. Salmond, M. Talbaut, and J. Voogt, 2005: The Urban Boundary Layer Field Campaign in Marseille (UBL/CLU-ESCOMPTE): set-up and first results, Bound. Layer Meteorol., 114, 315–365.CrossRefGoogle Scholar
  28. Mestayer, P.G., I. Calmet, S. Leroyer, A. Mahura, N. Long, 2006: Urban soil models for NWP models, In: Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure, Final Project Scientific Report; Volume III: CONTRIBUTION REPORTS BY THE PARTNERS, A. Bakalnov editor FUMAPEX contract EVK4-CT-2002-00097, Janvier 2006, pp. 53–59.Google Scholar
  29. Noilhan, J., and S. Planton, 1989: A simple parametrization of land surface processes for meteorological models, Mon. Wea. Rev., 117, 536–549.CrossRefGoogle Scholar
  30. Noilhan, J., and J.-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145–159.CrossRefGoogle Scholar
  31. Piringer, M., C.S.B. Grimmond, S.M. Joffre, P. Mestayer, D.R. Middleton, M.W. Rotach, A. Baklanov, K. De Ridder, J. Ferreira, E. Guilloteau, A. Karpinnen, A. Martilli, V. Masson, and M. Tombrou, 2002: Investigating the surface energy balance in urban areas – Recent advances and futur needs, J. Water, Air, Soil Pollut: Focus, 2, N° 5–6, 1–16.CrossRefGoogle Scholar
  32. Pleim, J.E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 16–32.CrossRefGoogle Scholar
  33. Sini, J.-F., S. Anquetin, and P.G. Mestayer, 1996: Pollutant dispersion and thermal effects in urban street canyons, Atmos. Environ., 30, 2659–2677.CrossRefGoogle Scholar
  34. Smith, S.D., 1988: Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature, J. Geophys. Res., 93, 15467–15474.CrossRefGoogle Scholar
  35. Zilitinkevich, S.S., 1995: Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows. In: Power H., Moussiopoulos N., Brebbia C.A. (Eds.), Air Pollution Theory and Simulation, Vol. 1, Air Pollution III, Computational Mechanics Publications, 53–60.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratoire de Mécanique des FluidesUMR CNRS 6598, Ecole Centrale de NantesNantes cedex 3France

Personalised recommendations