Skip to main content

Yeast Killer Toxins: Fundamentals and Applications

  • Chapter
  • First Online:
Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

Killer phenomena in yeast are due to the secretion of polypeptides with a lethal or growth-inhibitory effect on competing strains. Yeast killer toxins display structural heterogeneity, ranging in size from small peptides to large protein complexes. Accordingly, they attack various constituents of sensitive cells, including the cell wall and plasma membrane, but also intracellular targets such as the replication machinery and tRNAs. The genetic basis of toxin production is similarly variable, as it may be encoded chromosomally or by cytoplasmic elements of viral origin, i.e. dsRNA-containing virus-like particles and extranuclear linear dsDNA plasmids. As in both of the latter, toxin production is genetically linked with respect to immunity, cytoplasmically encoded killer sytems facilitate auto-selection of associated genetic elements. This chapter presents current knowledge about the distribution of yeast killer toxins, their structure, mode of action and resistance and their applications in agriculture, food industry, medicine and in basic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL, Goldstein SA (1999) A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99:283–291

    CAS  PubMed  Google Scholar 

  • Antuch W, Güntert P, Wüthrich K (1996) Ancestral beta gamma-crystallin precursor structure in a yeast killer toxin. Nat Struct Biol 3:662–665

    CAS  PubMed  Google Scholar 

  • Ashida S, Shimazaki T, Kitano K, Hara S (1983) New killer toxin of Hansenula mrakii. Agric Biol Chem 47:2953–2955

    CAS  Google Scholar 

  • Bevan EA, Makower M (1963) The physiological basis of the killer character in yeast. Proc XI Int Congr Genet 1:202–203

    Google Scholar 

  • Bevan EA, Herring AJ, Mitchell DJ (1973) Preliminary characterization of two species of dsRNA in yeast and their relationship to the “killer” character. Nature 245:81–86

    CAS  PubMed  Google Scholar 

  • Bolen PL, Kurtzman CP, Ligon JM, Mannarelli BM, Bothast RJ (1992) Physical and genetic characterization of linear DNA plasmids from the heterothallic yeast Saccharomycopsis crataegensis. Antonie Van Leuwenhoek 61:195–295

    CAS  Google Scholar 

  • Boone C, Sdicu AM, Wagner J, Degré R, Sanchez C, Bussey H (1990) Integration of the yeast K1 killer toxin gene into the genome of marked wine yeasts and its effect on vinifcation. Am J Enol Vitic 41:37–42

    CAS  Google Scholar 

  • Bostian KA, Elliott Q, Bussey H, Burn V, Smith A, Tipper DJ (1984) Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 36:741–751

    CAS  PubMed  Google Scholar 

  • Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405

    CAS  PubMed  Google Scholar 

  • Breinig F, Schleinkofer K, Schmitt MJ (2004) Yeast Kre1p is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology 150:3209–3218

    CAS  PubMed  Google Scholar 

  • Breinig F, Sendzik T, Eisfeld K, Schmitt MJ (2006) Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc Natl Acad Sci USA 103:3810–3815

    CAS  PubMed  Google Scholar 

  • Bussey H (1991) K1 killer toxin, a pore-forming protein from yeast. Mol Microbiol 5:2339–2343

    CAS  PubMed  Google Scholar 

  • Butler AR, White JH, Stark MJR (1991a) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137:1749–1757

    CAS  Google Scholar 

  • Butler AR, O'Donnell RW, Martin VJ, Gooday GW, Stark MJ (1991b) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483–488

    CAS  Google Scholar 

  • Butler AR, Porter M, Stark MJR (1991c) Intracellular expression of Kluyveromyces lactis toxin γ subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7:617–625

    CAS  Google Scholar 

  • Buzzini P, Martini A (2000) Differential growth inhibition as a tool to increase the discriminating power of killer toxin sensitivity in fingerprinting of yeasts. FEMS Microbiol Lett. 193:31–36

    CAS  PubMed  Google Scholar 

  • Buzzini P, Berardinelli S, Turchetti B, Cardinali G, Martini A (2003) Fingerprinting of yeasts at the strain level by differential sensitivity responses to a panel of selected killer toxins. Syst Appl Microbiol 26:466–470

    CAS  PubMed  Google Scholar 

  • Buzzini P, Corazzi L, Turchetti B, Buratta M, Martini A (2004) Characterization of the in vitro antimycotic activity of a novel killer protein from Williopsis saturnus DBVPG 4561 against emerging pathogenic yeasts. FEMS Microbiol Lett 238:359–365

    CAS  PubMed  Google Scholar 

  • Buzzini P, Turchetti B, Vaughan-Martini AE (2007) The use of killer sensitivity patterns for biotyping yeast strains: the state of the art, potentialities and limitations. FEMS Yeast Res 7:749–760

    CAS  PubMed  Google Scholar 

  • Castón JR, Trus BL, Booy FP, Wickner RB, Wall JS, Steven AC (1997) Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. J Cell Biol 138:975–985

    PubMed  Google Scholar 

  • Cenci E, Bistoni F, Mencacci A, Perito S, Magliani W, Conti S, Polonelli L, Vecchiarelli A (2004) A synthetic peptide as a novel anticryptococcal agent. Cell Microbiol 6:953–961

    CAS  PubMed  Google Scholar 

  • Chen WB, Han JF, Jong SC, Chang SC (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66:5348–5352

    CAS  PubMed  Google Scholar 

  • Ciani M, Fatichenti F (2001) Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine Yeasts. Appl Environ Microbiol 67:3058–3063

    CAS  PubMed  Google Scholar 

  • Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M (2004a) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240

    CAS  Google Scholar 

  • Comitini F, Di Pietro N, Zacchi L, Mannazzu I, Ciani M (2004b) Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology 150:2535–2541

    CAS  Google Scholar 

  • Cong YS, Yarrow D, Li YY, Fukuhara H (1994) Linear DNA plasmids from Pichia etchellsii, Debaryomyces hansenii and Wingea robertsiae. Microbiology 140:1327–1335

    CAS  PubMed  Google Scholar 

  • da Silva S, Calado S, Lucas C, Aguiar C (2008) Unusual properties of the halotolerant yeast Candida nodaensis Killer toxin, CnKT. Microbiol Res 163:243–251

    CAS  PubMed  Google Scholar 

  • de la Peña P, Barros F, Gascón S, Lazo PS, Ramos S (1981) Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256:10420–10425

    PubMed  Google Scholar 

  • Dignard D, Whiteway M, Germain D, Tessier D, Thomas DY (1991) Expression in yeast of a cDNA copy of the K2 killer toxin gene. Mol Gen Genet 227:127–136

    CAS  PubMed  Google Scholar 

  • Dinman JD, Icho T, Wickner RB (1991) A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88:174–178

    CAS  PubMed  Google Scholar 

  • Donini M, Lico C, Baschieri S, Conti S, Magliani W, Polonelli L, Benvenuto E (2005) Production of an engineered killer peptide in Nicotiana benthamiana by using a potato virus X expression system. Appl Environ Microbiol 71:6360–6367

    CAS  PubMed  Google Scholar 

  • Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2000) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37:926–940

    CAS  PubMed  Google Scholar 

  • Fuentefria AM, Suh SO, Landell MF, Faganello J, Schrank A, Vainstein MH, Blackwell M, Valente P. Trichosporon insectorum sp. nov., a new anamorphic basidiomycetous killer yeast. Mycol Res 112:93–99

    Google Scholar 

  • Fichtner L, Schaffrath R (2002) KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44:865–875

    CAS  PubMed  Google Scholar 

  • Fichtner L, Frohloff F, Burkner K, Larsen M, Breunig KD, Schaffrath R (2002) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43:783–791

    CAS  PubMed  Google Scholar 

  • Fukuhara H (1995) Linear DNA plasmids of yeasts. FEMS Microbiol Lett 131:1–9

    CAS  PubMed  Google Scholar 

  • Frohloff F, Fichtner L, Jablonowski D, Breuning KD, Schaffrath R (2001) Saccharomyces cerevisiae elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20:1993–2003

    CAS  PubMed  Google Scholar 

  • Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Péter G (eds) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Heidelberg, pp 197–219

    Google Scholar 

  • Golubev W, Shabalin Y (1994) Microcin production by the yeast Cryptococcus humicola. FEMS Microbiol Lett 119:105–110

    CAS  PubMed  Google Scholar 

  • Golubev WI, Pfeifer I, Golubeva E (2002) Mycocin production in Trichosporon pullulans populations colonizing tree exudates in the spring. FEMS Microbiol Ecol 40:151–157

    CAS  PubMed  Google Scholar 

  • Golubev WI, Pfeiffer I, Churkina LG, Golubeva EW (2003) Double-stranded RNA viruses in a mycocinogenic strain of Cystofilobasidium infirmominiatum. FEMS Yeast Res 3:63–68

    CAS  PubMed  Google Scholar 

  • Goto K, Iwatuki Y, Kitano K, Obata T, Hara S (1990) Cloning and nucleotide sequence of the KHR killer gene of Saccharomyces cerevisiae. Agric Biol Chem 54:979–984

    CAS  PubMed  Google Scholar 

  • Goto K, Fukuda H, Kichise K, Kitano K, Hara S (1991) Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. Agric Biol Chem 55:1953–1958

    CAS  PubMed  Google Scholar 

  • Gu F, Khimani A, Rane SG, Flurkey WH, Bozarth RF, Smith TJ (1995) Structure and function of a virally encoded fungal toxin from Ustilago maydis: a fungal and mammalian Ca2+ channel inhibitor. Structure 3:805–814

    CAS  PubMed  Google Scholar 

  • Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382–390

    CAS  PubMed  Google Scholar 

  • Guyard C, Séguy N, Lange M, Ricard I, Polonelli L, Cailliez JC (1999) First steps in the purification and characterization of a Pichia anomala killer toxin. J Eukaryot Microbiol 46:144S

    CAS  PubMed  Google Scholar 

  • Guyard C, Evrard P, Corbisier-Colson AM, Louvart H, Dei-Cas E, Menozzi FD, Polonelli L, Cailliez J (2001) Immuno-cross reactivity of an anti-Pichia anomala killer toxin monoclonal antibody with a Williopsis saturnus var. mrakii killer toxin. Med Mycol 39:395–400

    CAS  PubMed  Google Scholar 

  • Guyard C, Séguy N, Cailliez JC, Drobecq H, Polonelli L, Dei-Cas E, Mercenier A, Menozzi FD (2002a) Characterization of a Williopsis saturnus var. mrakii high molecular weight secreted killer toxin with broad-spectrum antimicrobial activity. J Antimicrob Chemother. 49:961–971

    CAS  Google Scholar 

  • Guyard C, Dehecq E, Tissier JP, Polonelli L, Dei-Cas E, Cailliez JC, Menozzi FD (2002b) Involvement of β-glucans in the wide-spectrum antimicrobial activity of Williopsis saturnus var. mrakii MUCL 41968 killer toxin. Mol Med 8:686–694

    CAS  Google Scholar 

  • Hara S, Iimura Y, Otsuka K (1980) Breeding of useful killer wine yeasts. Am J Enol Vitic 31:28–33

    Google Scholar 

  • Hayman GT, Bolen BL (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Curr Genet 19:389–393

    CAS  PubMed  Google Scholar 

  • Heiligenstein S, Eisfeld K, Sendzik T, Jimenéz-Becker N, Breinig F, Schmitt MJ (2006) Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J 25:4717–4727

    CAS  PubMed  Google Scholar 

  • Hishinuma F, Hirai K (1991) Genome organization of the linear plasmid, pSKL, isolated from Saccharomyces kluyveri. Mol Gen Genet 226:97–106

    CAS  PubMed  Google Scholar 

  • Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequence of the DNA killer plasmids from yeast. Nucleic Acids Res 12:l7581–7597

    Google Scholar 

  • Hodgson VJ, Button D, Walker GM (1995) Anti-Candida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiology 141:2003–2012

    CAS  PubMed  Google Scholar 

  • Huang B, Johansson MJ, Bystrom AS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424–436

    CAS  PubMed  Google Scholar 

  • Hutchins K, Bussey H (1983) Cell wall receptor for yeast killer toxin: involvement of (1-6)-β-D-glucan. J Bacteriol 154:161–169

    CAS  PubMed  Google Scholar 

  • Icho T, Wickner RB (1989) The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem 264:6716–6723

    CAS  PubMed  Google Scholar 

  • Izgü F, Altinbay D, Sağiroğlu AK (1999) Isolation and characterization of the K6 type yeast killer protein. Microbios 99:161–172

    PubMed  Google Scholar 

  • Izgü F, Altinbay D (2004) Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3-glucanase. Biosci Biotechnol Biochem 68:685–693

    PubMed  Google Scholar 

  • Izgü F, Altinbay D, Sertkaya A (2005) Enzymic activity of the K5-type yeast killer toxin and its characterization. Biosci Biotechnol Biochem 69:2200–2206

    PubMed  Google Scholar 

  • Izgü F, Altinbay D, Türeli AE (2007a) In vitro susceptibilities of Candida spp. to Panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434. Microbiol Immunol 51:797–803

    Google Scholar 

  • Izgü F, Altinbay D, Türeli AE (2007b) In vitro activity of panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434, against dermatophytes. Mycoses 50:31–34

    Google Scholar 

  • Jacobs CJ, and Van Vuuren HJJ (1991) Effects of different killer yeasts on wine fermentations Am J Enol Vitic 42:4:295–300

    CAS  Google Scholar 

  • Jablonowski D, Schaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35:1533–1537

    CAS  PubMed  Google Scholar 

  • Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, Schaffrath R (2001) Saccharomyces cerevisiae cell wall chitin, the potential Kluyveromyces lactis zymocin receptor. Yeast 18:1285–1299

    CAS  PubMed  Google Scholar 

  • Jablonowski, D, Zink, S, Mehlgarten, C, Daum, G, and Schaffrath, R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Mol Microbiol 59:677–688

    CAS  PubMed  Google Scholar 

  • Jeske S, Meinhardt F (2006) Autonomous cytoplasmic linear plasmid pPac1-1 of Pichia acaciae: molecular structure and expression studies. Yeast 23:479–486

    CAS  PubMed  Google Scholar 

  • Jeske S, Meinhardt F, Klassen R (2006a) Extranuclear inheritance: virus-like DNA-elements in yeast. In: Esser K, Lüttge U, Kadereit J, Beyschlag W (eds) Progress in botany, vol 68. Springer, Heidelberg, pp 98–129

    Google Scholar 

  • Jeske S, Tiggemann M, Meinhardt F (2006b) Yeast autonomous linear plasmid pGKL2: ORF9 is an actively transcribed essential gene with multiple transcription start points. FEMS Microbiol Lett 255:321–327

    CAS  Google Scholar 

  • Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23:9283–9292

    CAS  PubMed  Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989a) New recombinant linear DNA-elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res 17:1781

    Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989b) In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol 9:3931–3937

    Google Scholar 

  • Kämper J, Esser K, Gunge N, Meinhardt F (1991) Heterologous gene expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr Genet 19:109–118

    PubMed  Google Scholar 

  • Kasahara S, Ben Inoue S, Mio T, Yamada T, Nakajima T, Ichishima E, Furuichi Y, Yamada H (1994) Involvement of cell wall β-glucan in the action of HM-1 killer toxin. FEBS Lett 348:27–32

    CAS  PubMed  Google Scholar 

  • Kashiwagi T, Kunishima N, Suzuki C, Tsuchiya F, Nikkuni S, Arata Y, Morikawa K (1997) The novel acidophilic structure of the killer toxin from halotolerant yeast demonstrates remarkable folding similarity with a fungal killer toxin. Structure 5:81–94

    CAS  PubMed  Google Scholar 

  • Keszthelyi A, Ohkusu M, Takeo K, Pfeiffer I, Litter J, Kucsera J (2006) Characterisation of the anticryptococcal effect of the FC-1 toxin produced by Filobasidium capsuligenum. Mycoses 49:176–183

    CAS  PubMed  Google Scholar 

  • Kimura T, Kitamoto N, Matsuoka K, Nakamura K, Iimura Y, Kito Y (1993) Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Gene 137:265–270

    CAS  PubMed  Google Scholar 

  • Kinal H, Park CM, Berry JO, Koltin Y, Bruenn JA (1995) Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants. Plant Cell 7:677–688

    CAS  PubMed  Google Scholar 

  • Kitada K, Hishinuma H (1987) A new linear plasmid isolated from the yeast Saccharomyces kluyveri. Mol Gen Genet 206:377–381

    CAS  Google Scholar 

  • Kitamoto HK, Ohmomo S, Nakahara T (1993) Selection of killer yeasts (Kluyveromyces lactis) to prevent aerobic deterioration in silage making. J Dairy Sci 76:803–811

    CAS  PubMed  Google Scholar 

  • Kitamoto HK, Ohmomo S, Iimura Y (1998) Isolation and nucleotide sequence of the gene encoding phosphoenolpyruvate carboxykinase from Kluyveromyces lactis. Yeast 14:963–967

    CAS  PubMed  Google Scholar 

  • Kitamoto HK, Hasebe A, Ohmomo S, Suto EG, Muraki M, Iimura Y (1999) Prevention of aerobic spoilage of maize silage by a genetically modified killer yeast, Kluyveromyces lactis, defective in the ability to grow on lactic acid. Appl Environ Microbiol 65:4697–4700

    CAS  PubMed  Google Scholar 

  • Klassen R, Meinhardt F (2002) Linear plasmids pWR1A and pWR1B of the yeast Wingea robertsiae are associated with a killer phenotype. Plasmid 48:142–148

    CAS  PubMed  Google Scholar 

  • Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1-3 from Pichia inositovora. Mol Genet Genomics 270:190–199

    CAS  PubMed  Google Scholar 

  • Klassen R, Meinhardt F (2005) Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 7:393–401

    CAS  PubMed  Google Scholar 

  • Klassen R, Meinhardt F (2007) Linear protein-primed replicating plasmids in eukaryotic microbes. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Microbiology monographs, vol 7. Springer, Heidelberg, pp 187–226

    Google Scholar 

  • Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 18:953–961

    CAS  PubMed  Google Scholar 

  • Klassen R, Teichert S, Meinhardt F (2004) Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53:263–273

    CAS  PubMed  Google Scholar 

  • Klassen R, Jablonowski D, Stark MJR, Schaffrath R, Meinhardt F (2006) Mating type locus control of killer toxins from Kluyveromyces lactis and Pichia acaciae. FEMS Yeast Res 6:404–413

    CAS  PubMed  Google Scholar 

  • Klassen R, Krampe S, Meinhardt F (2007) Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae. DNA Repair (Amst) 6:1864–1875

    CAS  Google Scholar 

  • Klassen R, Paluszynski JP, Wemhoff Sa, Pfeiffer A, Fricke J, Meinhardt F (2008) The primary target of the killer toxin from Pichia acaciae is tRNAGln. Mol Microbiol 69:681–697

    CAS  PubMed  Google Scholar 

  • Koltin Y, Day PR (1976) Inheritance of killer phenotypes and double-stranded RNA in Ustilago maydis. Proc Natl Acad Sci USA 73:594–598

    CAS  PubMed  Google Scholar 

  • Komiyama T, Ohta T, Furuichi Y, Ohta Y, Tsukada Y (1995) Structure and activity of HYI killer toxin from Hansenula saturnus. Biol Pharm Bull 18:1057–1059

    CAS  PubMed  Google Scholar 

  • Komiyama T, Ohta T, Urakami H, Shiratori Y, Takasuka T, Satoh M, Watanabe T, Furuichi Y (1996) Pore formation on proliferating yeast Saccharomyces cerevisiae cell buds by HM-1 killer toxin. J Biochem 119:731–736

    CAS  PubMed  Google Scholar 

  • Komiyama T, Shirai T, Ohta T, Urakami H, Furuichi Y, Ohta Y, Tsukada Y (1998) Action properties of HYI killer toxin from Williopsis saturnus var. saturnus, and antibiotics, aculeacin A and papulacandin B. Biol Pharm Bull 21:1013–1019

    CAS  PubMed  Google Scholar 

  • Komiyama T, Kimura T, Furuichi Y (2002) Round shape enlargement of the yeast spheroplast of Saccharomyces cerevisiae by HM-1 toxin. Biol Pharm Bull 25:959–965

    CAS  PubMed  Google Scholar 

  • Kono I, Himeno K (1997) A novel killer yeast effective on Schizosaccharomyces pombe. Biosci Biotechnol Biochem. 61:563–564

    CAS  PubMed  Google Scholar 

  • Larsen M, Gunge N, Meinhardt F (1998) Kluyveromyces lactis killer plasmid pGKL2: Evidence for a viral-like capping enzyme encoded by OFR3. Plasmid 40:243–246

    CAS  PubMed  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    CAS  PubMed  Google Scholar 

  • Li N, Erman M, Pangborn W, Duax WL, Park CM, Bruenn J, Ghosh D (1999) Structure of Ustilago maydis killer toxin KP6 alpha-subunit. A multimeric assembly with a central pore. J Biol Chem. 4:20425–20431

    Google Scholar 

  • Ligon JM, Bolen PL, Hill DS, Bothast RJ, Kurtzman CP (1989) Physical and biological characterization of linear DNA plasmids of the yeast Pichia inositovora. Plasmid 2:185–194

    Google Scholar 

  • Lopes CA, Lavalle TL, Querol A, Caballero AC (2006) Combined use of killer biotype and mtDNA-RFLP patterns in a Patagonian wine Saccharomyces cerevisiae diversity study. Antonie Van Leeuwenhoek 89:147–156

    CAS  PubMed  Google Scholar 

  • Lopes CA, Rodríguez ME, Sangorrín M, Querol A, Caballero AC (2007) Patagonian wines: the selection of an indigenous yeast starter. J Ind Microbiol Biotechnol 34:539–546

    CAS  PubMed  Google Scholar 

  • Llorente P, Marquina D, Santos A, Peinado JM, Spencer-Martins I (1997) Effect of salt on the killer phenotype of yeasts from olive brines. Appl Environ Microbiol 63:1165–1167

    CAS  PubMed  Google Scholar 

  • Lowes KF, Shearman CA, Payne J, MacKenzie D, Archer DB, Merry RJ, Gasson MJ (2000) Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl Environ Microbiol 66:1066–1076

    CAS  PubMed  Google Scholar 

  • Lu J, Huang B, Esberg A, Johansson MJ, Bystrom AS (2005) The Kluyveromyces lactis γ-toxin targets tRNA anticodons. RNA 11:1648–1654

    CAS  PubMed  Google Scholar 

  • Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L (1997a) Yeast killer systems. Clin Microbiol Rev 10:369–400

    CAS  Google Scholar 

  • Magliani W, Conti S, de Bernardis F, Gerloni M, Bertolotti D, Mozzoni P, Cassone A, Polonelli L (1997b). Therapeutic potential of antiidiotypic single chain antibodies with yeast killer toxin activity. Nat Biotechnol 15:155–158

    CAS  Google Scholar 

  • Magliani W, Conti S, Salati A, Vaccari S, Ravanetti L, Maffei DL, Polonelli L (2004). Therapeutic potential of yeast killer toxin-like antibodies and mimotopes. FEMS Yeast Res 5:11–18

    CAS  PubMed  Google Scholar 

  • Marquina D, Peres C, Caldas FV, Marques JF, Peinado JM, Spencer-Martins I (1992) Characterization of the yeast populations in olive brines. Lett Appl Microbiol 14:279–283

    Google Scholar 

  • Martinac B, Zhu H, Kubalski A, Zhou XL, Culbertson M, Bussey H, Kung C (1990) Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci USA 87:6228–6232

    CAS  PubMed  Google Scholar 

  • McCracken DA, Martin VJ, Stark MJ, Bolen PL (1994) The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiology 140:425–431

    CAS  PubMed  Google Scholar 

  • Mehlgarten C, Schaffrath R (2004) After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 6:569–580

    CAS  PubMed  Google Scholar 

  • Meskauskas A, Citavicius D (1992) The K2-type killer toxin- and immunity-encoding region from Saccharomyces cerevisiae: structure and expression in yeast. Gene 111:135–139

    CAS  PubMed  Google Scholar 

  • Michalcáková S, Sturdík E, Sulo P (1994) Construction and properties of K2 and K3 type killer Saccharomyces wine yeasts. Wein-Wissenschaft 49:130–132

    Google Scholar 

  • Middelbeek EJ, Hermans JM, Stumm C (1979) Production, purification and properties of a Pichia kluyveri killer toxin. Antonie Van Leeuwenhoek 45:437–450

    CAS  PubMed  Google Scholar 

  • Middelbeek EJ, van de Laar HH, Hermans JM, Stumm C, Vogels GD (1980a) Physiological conditions affecting the sensitivity of Saccharomyces cerevisiae to a Pichia kluyveri killer toxin and energy requirement for toxin action. Antonie Van Leeuwenhoek 46:483–497

    CAS  Google Scholar 

  • Middelbeek EJ, Crützen QH, Vogels GD (1980b) Effects of potassium and sodium ions on the killing action of a Pichia kluyveri toxin in cells of Saccharomyces cerevisiae. Antimicrob Agents Chemother 18:519–524

    CAS  Google Scholar 

  • Morace G, Archibusacci C, Sestito M, Polonelli L (1984) Strain differentiation of pathogenic yeasts by the killer system. Mycopathologia 84:81–85

    CAS  PubMed  Google Scholar 

  • Morace G, Dettori G, Sanguinetti M, Manzara S, Polonelli L (1988) Biotyping of aerobic actinomycetes by modified killer system. Eur J Epidemiol 4:99–103

    CAS  PubMed  Google Scholar 

  • Morace G, Manzara S, Dettori G, Fanti F, Conti S, Campani L, Polonelli L, Chezzi C (1989) Biotyping of bacterial isolates using the yeast killer system. Eur J Epidemiol 5:303–310

    CAS  PubMed  Google Scholar 

  • Nakatsukasa K, Brodsky JL (2008) The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9:861–870

    CAS  PubMed  Google Scholar 

  • Novotná D, Flegelová H, Janderová B (2004) Different action of killer toxins K1 and K2 on the plasma membrane and the cell wall of Saccharomyces cerevisiae. FEMS Yeast Res 4:803–813

    PubMed  Google Scholar 

  • Ouchi K, Akiyama H (1976) Breeding of useful killer sake yeasts by repeated back-crossing. J Ferment Technol 54:615

    Google Scholar 

  • Pagé N, Gérard-Vincent M, Ménard P, Beaulieu M, Azuma M, Dijkgraaf GJ, Li H, Marcoux J, Nguyen T, Dowse T, Sdicu AM, Bussey H (2003) A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 163:875–894

    PubMed  Google Scholar 

  • Paluszynski JP, Klassen R, Meinhardt F (2007) Pichia acaciae killer system: genetic analysis of toxin immunity. Appl Environ Microbiol 73:4373–4378

    CAS  PubMed  Google Scholar 

  • Park CM, Bruenn JA, Ganesa C, Flurkey WF, Bozarth RF, Koltin Y (1994) Structure and heterologous expression of the Ustilago maydis viral toxin KP4. Mol Microbiol 11:155–164

    CAS  PubMed  Google Scholar 

  • Park CM, Banerjee N, Koltin Y, Bruenn JA (1996a) The Ustilago maydis virally encoded KP1 killer toxin. Mol Microbiol 20:957–963

    CAS  Google Scholar 

  • Park CM, Berry JO, Bruenn JA (1996b) High-level secretion of a virally encoded anti-fungal toxin in transgenic tobacco plants. Plant Mol Biol 30:359–366

    CAS  Google Scholar 

  • Peery T, Shabat-Brand T, Steinlauf R, Koltin Y, Bruenn J (1987) Virus-encoded toxin of Ustilago maydis: two polypeptides are essential for activity. Mol Cell Biol 7:470–477

    CAS  PubMed  Google Scholar 

  • Pfeiffer P, Radler F (1984) Comparison of the killer toxin of several yeasts and the purification of a toxin of type K2. Arch Microbiol 137:357–361

    CAS  PubMed  Google Scholar 

  • Pfeiffer I, Golubev WI, Farkas Z, Kucsera J, Golubev N (2004) Mycocin production in Cryptococcus aquaticus. Antonie Van Leeuwenhoek 86:369–375

    CAS  PubMed  Google Scholar 

  • Polonelli L, Morace G (1986) Reevaluation of the yeast killer phenomenon. J Clin Microbiol 24:866–869

    CAS  PubMed  Google Scholar 

  • Polonelli L, Morace G (1987) Production and characterization of yeast killer toxin monoclonal antibodies. J Clin Microbiol 25:460–462

    CAS  PubMed  Google Scholar 

  • Polonelli L, Morace G (1988) Yeast killer toxin-like anti-idiotypic antibodies. J Clin Microbiol 26:602–604

    CAS  PubMed  Google Scholar 

  • Polonelli L, Archibusacci C, Sestito M, Morace G (1983) Killer system: a simple method for differentiating Candida albicans strains. J Clin Microbiol 17:774–780

    CAS  PubMed  Google Scholar 

  • Polonelli L, Castagnola M, Rossetti DV, Morace G (1985) Use of killer toxins for computer-aided differentiation of Candida albicans strains. Mycopathologia. 91:175–179

    CAS  PubMed  Google Scholar 

  • Polonelli L, Dettori G, Cattel C, Morace G. Biotyping of micelial fungus cultures by the killer system. Eur J Epidemiol 3:237–242

    Google Scholar 

  • Polonelli L, Fanti F, Conti S, Campani L, Gerloni M, Castagnola M, Morace G, Chezzi C (1990) Detection by immunofluorescent anti-idiotypic antibodies of yeast killer toxin cell wall receptors of Candida albicans. J Immunol Methods 132:205–209

    CAS  PubMed  Google Scholar 

  • Polonelli L, Lorenzini R, De Bernardis F, Gerloni M, Conti S, Morace G, Magliani W, Chezzi C (1993) Idiotypic vaccination: immunoprotection mediated by anti-idiotypic antibodies with antibiotic activity. Scand J Immunol 37:105–110

    CAS  PubMed  Google Scholar 

  • Polonelli L, De Bernardis F, Conti S, Boccanera M, Gerloni M, Morace G, Magliani W, Chezzi C, Cassone A (1994) Idiotypic intravaginal vaccination to protect against candidal vaginitis by secretory, yeast killer toxin-like anti-idiotypic antibodies. J Immunol 152:3175–3182

    CAS  PubMed  Google Scholar 

  • Polonelli L, Séguy N, Conti S, Gerloni M, Bertolotti D, Cantelli C, Magliani W, Cailliez JC (1997) Monoclonal yeast killer toxin-like candidacidal anti-idiotypic antibodies. Clin Diagn Lab Immunol 4:142–146

    CAS  PubMed  Google Scholar 

  • Polonelli L, Magliani W, Conti S, Bracci L, Lozzi L, Neri P, Adriani D, De Bernardis F, Cassone A (2003) Therapeutic activity of an engineered synthetic killer antiidiotypic antibody fragment against experimental mucosal and systemic candidiasis. Infect Immun 71:6205–6212

    CAS  PubMed  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    CAS  PubMed  Google Scholar 

  • Puhalla JE (1968) Compatibility reactions on solid medium and interstrain inhibition in Ustilago maydis. Genetics 60:461–474

    CAS  PubMed  Google Scholar 

  • Puchkov EO, Wiese A, Seydel U, Kulakovskaya TV (2001) Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humicola mycocidal compound (microcin). Biochim Biophys Acta 1512:239–250

    CAS  PubMed  Google Scholar 

  • Puchkov EO, Zähringer U, Lindner B, Kulakovskaya TV, Seydel U, Wiese A (2002) The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. Biochim Biophys Acta 1558:161–170

    CAS  PubMed  Google Scholar 

  • Radler F, Schmitt MJ, Meyer B (1990) Killer toxin of Hanseniaspora uvarum. Arch Microbiol 154:175–178

    CAS  PubMed  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358

    CAS  PubMed  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    CAS  PubMed  Google Scholar 

  • Riffer F, Eisfeld K, Breinig F, Schmitt MJ (2002) Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. Microbiology 148:1317–1328

    CAS  PubMed  Google Scholar 

  • Romanos M, Boyd A (1988) A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 of Kluyveromyces lactis: evidence that native k1 has novel promoters. Nucleic Acids Res 16:7333–7350

    CAS  PubMed  Google Scholar 

  • Sangorrín M, Zajonskovsky I, van Broock M, Caballero A (2002) The use of killer biotyping in an ecological survey of yeast in an old patagonian winery World J Microbiol Biotechnol 18:115–120

    Google Scholar 

  • Santos A, Marquina D (2004a). Ion channel activity by Pichia membranifaciens killer toxin. Yeast 21:151–162

    CAS  Google Scholar 

  • Santos A, Marquina D (2004b) Killer toxin of Pichia membranifaciens and its possible use as a biocontrol agent against grey mould disease of grapevine. Microbiology 150:2527–2534

    CAS  Google Scholar 

  • Santos A, Marquina D, Leal JA, Peinado JM (2000) (1-6)-β-D-glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microbiol 66:1809–1813

    CAS  PubMed  Google Scholar 

  • Santos A, Marquina D, Barroso J, Peinado JM (2002) (1-6)-β-D-glucan as the cell wall binding site for Debaryomyces hansenii killer toxin. Lett Appl Microbiol 34:95–99

    CAS  PubMed  Google Scholar 

  • Santos A, Sánchez A, Marquina D (2004) Yeasts as biological agents to control Botrytis cinerea. Microbiol Res 159:331–338

    CAS  PubMed  Google Scholar 

  • Santos A, Del Mar Alvarez M, Mauro MS, Abrusci C, Marquina D (2005) The transcriptional response of Saccharomyces cerevisiae to Pichia membranifaciens killer toxin. J Biol Chem 280:41881–41892

    CAS  PubMed  Google Scholar 

  • Santos A, San Mauro M, Abrusci C, Marquina D (2007) Cwp2p, the plasma membrane receptor for Pichia membranifaciens killer toxin. Mol Microbiol 64:831–843

    CAS  PubMed  Google Scholar 

  • Sawant AD, Abdelal AT, Ahearn DG (1989) Purification and characterization of the anti-Candida toxin of Pichia anomala WC 65. Antimicrob Agents Chemother 33:48–52

    CAS  PubMed  Google Scholar 

  • Schaffrath R, Meinhardt F (2004) Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Topics in Current Genetics Vol. 11, M. Schmitt, R. Schaffrath (eds.): Microbial Protein Toxins 133–155

    Google Scholar 

  • Schickel J, Helmig C, Meinhardt F (1996) Kluyveromyces lactis killer system. Analysis of cytoplasmic promoters of linear plasmids. Nucleic Acids Res 24:1879–1886

    CAS  Google Scholar 

  • Schmitt M, Radler F (1987) Mannoprotein of the yeast cell wall as primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 133:3347–3354

    CAS  PubMed  Google Scholar 

  • Schmitt MJ, Tipper DJ (1987) Genetic analysis of maintenance and expression of L and M double-stranded RNAs from yeast killer virus K28. Yeast 8:373–384

    Google Scholar 

  • Schmitt MJ, Tipper DJ (1990) K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol 10:4807–4815

    CAS  PubMed  Google Scholar 

  • Schmitt MJ, Neuhausen F (1994) Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii. J Virol 68:1765–1772

    CAS  PubMed  Google Scholar 

  • Schmitt MJ, Tipper DJ (1995) Sequence of the M28 dsRNA: preprotoxin is processed to an α/β heterodimeric protein toxin. Virology 213:341–351

    CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2002). The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276

    CAS  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    CAS  PubMed  Google Scholar 

  • Schmitt MJ, Klavehn P, Wang J, Schönig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142:2655–2662

    CAS  PubMed  Google Scholar 

  • Schmitt MJ, Poravou O, Trenz K, Rehfeldt K (1997) Unique double-stranded RNAs responsible for the anti-Candida activity of the yeast Hanseniaspora uvarum. J Virol 71:8852–8855

    CAS  PubMed  Google Scholar 

  • Seki T, Choi EH, Ryu D (1985) Construction of killer wine yeast strain. Appl Environ Microbiol 49:1211–1215

    CAS  PubMed  Google Scholar 

  • Semenza JC, Hardwick KG, Dean N, Pelham HR (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61:1349–1357

    CAS  PubMed  Google Scholar 

  • Selvakumar D, Zhang QZ, Miyamoto M, Furuichi Y, Komiyama T (2006a) Identification and characterization of a neutralizing monoclonal antibody for the epitope on HM-1 killer toxin. J Biochem 139:399–406

    CAS  Google Scholar 

  • Selvakumar D, Miyamoto M, Furuichi Y, Komiyama T (2006b) Inhibition of fungal β-1,3-glucan synthase and cell growth by HM-1 killer toxin single-chain anti-idiotypic antibodies. Antimicrob Agents Chemother 50:3090–3097

    CAS  Google Scholar 

  • Selvakumar D, Miyamoto M, Furuichi Y, Komiyama T (2006c) Inhibition of β-1,3-glucan synthase and cell growth of Cryptococcus species by recombinant single-chain anti-idiotypic antibodies. J Antibiot (Tokyo) 59:73–79

    CAS  Google Scholar 

  • Sulo P, Michalcáková S (1992) The K3 type killer strains of genus Saccharomyces for wine production. Folia Microbiol (Praha) 37:289–294

    CAS  Google Scholar 

  • Sulo P, Michalcakova S, Reiser V (1992) Construction and properties of K1 type killer wine yeasts. Biotechnology Letters 14, 55–60

    Google Scholar 

  • Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9:147–155

    CAS  Google Scholar 

  • Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995–2002

    CAS  PubMed  Google Scholar 

  • Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29

    CAS  PubMed  Google Scholar 

  • Stark MJ, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12:6011–6030

    CAS  PubMed  Google Scholar 

  • Steinberg G, Perez-Martin J (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18:61–67

    CAS  PubMed  Google Scholar 

  • Suzuki C, Nikkuni S (1989) Purification and properties of the killer toxin produced by a halotolerant yeast, Pichia farinosa. Agricultural Biol Chem 53:2599–2604

    CAS  Google Scholar 

  • Suzuki C, Nikkuni S (1994) The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, Pichia farinosa. J Biol Chem 269:3041–3046

    CAS  PubMed  Google Scholar 

  • Suzuki C, Kashiwagi T, Tsuchiya F, Kunishima N, Morikawa K, Nikkuni S, Arata Y (1997) Circular dichroism analysis of the interaction between the α and β subunits in a killer toxin produced by a halotolerant yeast, Pichia farinosa. Protein Eng 10:99–101

    CAS  PubMed  Google Scholar 

  • Suzuki C, Ando Y, Machida S (2001) Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast 18:1471–1478

    CAS  PubMed  Google Scholar 

  • Takasuka T, Komiyama T, Furuichi Y, Watanabe T (1995) Cell wall synthesis specific cytocidal effect of Hansenula mrakii toxin-1 on Saccharomyces cerevisiae. Cell Mol Biol Res 41:575–581

    CAS  PubMed  Google Scholar 

  • Tao J, Ginsberg I, Banerjee N, Held W, Koltin Y, Bruenn JA (1990) Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol Cell Biol 10:1373–1381

    CAS  PubMed  Google Scholar 

  • Theisen S, Molkenau E, Schmitt MJ (2000) Wicaltin, a new protein toxin secreted by the yeast Williopsis californica and its broad-spectrum antimycotic potential. J Microbiol Biotechnol 10:547–550

    CAS  Google Scholar 

  • Tiggemann M, Jeske S, Larsen M, Meinhardt F (2001) Kluyveromyces lactis cytoplasmic plasmid pGKL2: Heterologous expression of Orf3p and prove of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18:815–825

    CAS  PubMed  Google Scholar 

  • Tipper DJ, Bostian KA (1984) Double-stranded ribonucleic acid killer systems in yeasts. Microbiol Rev 48:125–156

    CAS  PubMed  Google Scholar 

  • Tokunaga M, Wada N, Hishinuma F (1987) Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15:1031–1046

    CAS  PubMed  Google Scholar 

  • Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435–3446

    CAS  PubMed  Google Scholar 

  • Tommasino M, Ricci S, Galeotti C (1988) Genome organization of the killer plasmid pGKL2 from Kluyveromyces lactis. Nucleic Acids Res 16:5863–5978

    CAS  PubMed  Google Scholar 

  • Travassos LR, Silva LS, Rodrigues EG, Conti S, Salati A, Magliani W, Polonelli L (2004) Therapeutic activity of a killer peptide against experimental paracoccidioidomycosis. J Antimicrob Chemother 54:956–958

    CAS  PubMed  Google Scholar 

  • Walker GM, McLeod AH, Hodgson VJ (1995) Interactions between killer yeasts and pathogenic fungi. FEMS Microbiol Lett 127:213–222

    CAS  PubMed  Google Scholar 

  • Wang X, Chi Z, Yue L, Li J, Li M, Wu L (2007a) A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production. Microbiol Res 162:77–85

    CAS  Google Scholar 

  • Wang X, Chi Z, Yue L, Li J (2007b) Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab. Curr Microbiol 55:396–401

    CAS  Google Scholar 

  • Weiler F, Schmitt MJ (2003) Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res 3:69–76

    CAS  PubMed  Google Scholar 

  • Weiler F, Rehfeldt K, Bautz F, Schmitt MJ (2002) The Zygosaccharomyces bailii antifungal virus toxin zygocin: cloning and expression in a heterologous fungal host. Mol Microbiol 46:1095–1105

    CAS  PubMed  Google Scholar 

  • White JH, Butler AR, Stark MJR (1989) Kluyveromyces lactis toxin does not inhibit yeast adenylyl cylcase. Nature 341:666–668

    CAS  Google Scholar 

  • Wickner RB (1992) Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol 46:347–375

    CAS  PubMed  Google Scholar 

  • Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 60:250–265

    CAS  PubMed  Google Scholar 

  • Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid encoded RNA-polymerase of unique structure. Nucleic Acids Res 16:8097–8112

    CAS  PubMed  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    CAS  PubMed  Google Scholar 

  • Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77–80

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Iratani T, Hirata H, Imai M, Yamaguchi H (1986a) Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Lett 197:50–54

    CAS  Google Scholar 

  • Yamamoto T, Imai M, Tachibana K, Mayumi M (1986b) Application of monoclonal antibodies to the isolation and characterization of a killer toxin secreted by Hansenula mrakii. FEBS Lett 195:253–257

    CAS  Google Scholar 

  • Yamamoto T, Uchida K, Hiratani T, Miyazaki T, Yagiu J, Yamaguchi H (1988) In vitro activity of the killer toxin from yeast Hansenula mrakii against yeasts and molds. Antibiot (Tokyo) 41:398–403

    CAS  Google Scholar 

  • Young TW, Yagiu M (1978) A comparison of the killer character in different yeasts and its classification. Antonie Van Leeuwenhoek 44:59–77

    CAS  PubMed  Google Scholar 

  • Zabel R, Bär C, Mehlgarten C, Schaffrath R (2008) Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Mol Microbiol 69:175–187

    CAS  PubMed  Google Scholar 

  • Zhu H, Bussey H (1991) Mutational analysis of the functional domains of yeast K1 killer toxin. Mol Cell Biol 11:175–181

    CAS  PubMed  Google Scholar 

  • Zhu YS, Zhang XY, Cartwright CP, Tipper DJ (1992) Kex2-dependent processing of yeast K1 killer preprotoxin includes cleavage at ProArg-44. Mol Microbiol 6:511–520

    CAS  PubMed  Google Scholar 

  • Zhu YS, Kane J, Zhang XY, Zhang M, Tipper DJ (1993) Role of the gamma component of preprotoxin in expression of the yeast K1 killer phenotype. Yeast 9:251–266

    CAS  PubMed  Google Scholar 

  • Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJR, Schaffrath R (2005) Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryot Cell 4:879–889

    CAS  PubMed  Google Scholar 

  • Zorg J, Kilian S, Radler F (1988) Killer toxin producing strains of the yeasts Hanseniaspora uvarum and Pichia kluyveri. Arch Microbiol 149:261–267

    Google Scholar 

Download references

Acknowledgement.

Financial support by the Deutsche Forschungs Gemeinschaft (DFG) grant no. ME 1142/5-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Friedhelm Meinhardt or Roland Klassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meinhardt, F., Klassen, R. (2009). Yeast Killer Toxins: Fundamentals and Applications. In: Anke, T., Weber, D. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00286-1_6

Download citation

Publish with us

Policies and ethics