Cyclic Peptides and Depsipeptides from Fungi

Chapter
Part of the The Mycota book series (MYCOTA, volume 15)

Abstract

This chapter describes the occurrence of cyclic peptides and cyclic depsipeptides within the kingdom Eumycota (true fungi), the diversity of structures and their chemical building blocks, their ecological roles and their different biological activities. Finally, it discusses the importance of cyclic peptides and depsipeptides as drugs and lead compounds for agricultural and pharmaceutical applications.

References

  1. Abbanat D, Leighton M, Maiese W, Jones EBG, Pearce C, Greenstein M (1998) Cell wall active compounds produced by the marine fungus Hypoxylon oceanicum LL-15G56. J Antibiot 51:296–302PubMedGoogle Scholar
  2. Adachi K, Kanoh K, Wisespong P, Nishijima M, Shizuri Y (2005) Clonostachysins A and B, new antidinoflagellate cyclic peptides from a marine-derived fungus. J Antibiot 58:145–150PubMedGoogle Scholar
  3. Ahn JH, Walton JD (1998) Regulation of cyclic peptide biosynthesis and pathogenicity in Cochliobolus carbonum by TOXEP, a novel protein with a bZIP basic DNA-binding motif and four ankyrin repeats. Mol Gen Genet 260:462–469PubMedGoogle Scholar
  4. Amitani R, Taylor G, Elezis EN, Liewellyn-Jones C, Mitchell J, Kuze F, Cole PJ, Wilson R (1995) Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium. Infect Immun 63:3266–3271PubMedGoogle Scholar
  5. Anke H, Sterner O (2002) Insecticidal and nematicidal metabolites from fungi. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 109–127Google Scholar
  6. Anke H, Kinn J, Bergquist KE, Sterner O (1991) Production of siderophores by strains of the genus Trichoderma: Isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biol Metals 4:176–180Google Scholar
  7. Anke T, Erkel O (2002) Non β-lactam antibiotics. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 93–108Google Scholar
  8. Antelo L, Hof C, Eisfeld K, Sterner O, Anke H (2006) Siderophores produced by Magnaporthe grisea in the presence and absence of iron. Z Naturforsch. 61c:461–464Google Scholar
  9. Aoyagi A, Yano T, Kozuma S, Takatsu T (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:143–152Google Scholar
  10. Arai N, Shiomi K, Iwai Y, Omura S (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot 53:609–614Google Scholar
  11. Badan SD, Ridley DD, Singh P (1978) Isolation of cyclodepsipeptides from plant pathogenic fungi. Aust J Chem 31:1397–1399Google Scholar
  12. Belofsky GN, Gloer JB, Wicklow DT, Dowd PF (1998) Shearamide A: a new cyclic peptide from the ascostromata of Eupenicillium shearii. Tetrahedron Lett 39:5497–5500Google Scholar
  13. Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916Google Scholar
  14. Bertram A, Pattenden G (2007) Marine metabolites: metal binding and metal complexes of azole-based cyclic peptides of marine origin. Nat Prod Rep 24:18–30PubMedGoogle Scholar
  15. Betina V (1989) Epipolythiopiperazine-3,6-diones. In: Mycotoxins, chemical, biological and evironmental aspects. Elsevier, Amsterdam, pp 388–405Google Scholar
  16. Bills GF, Platas G, Peláez F, Masurekar P (1999) Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol Res 103:179–192Google Scholar
  17. Birch AJ, Massy-Westropp RA, Rickards RW (1956) Studies in relation to biosynthesis. Part VIII. The structure of mycelianamide. J Chem Soc 3717-3721Google Scholar
  18. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78PubMedGoogle Scholar
  19. Boros C, Smith CJ, Vasina Y, Che Y, Dix AB, Darveaux B, Pearce C (2006) Isolation and identification of the icosalides – cyclic peptolides with selective antibiotic and cytotoxic activities. J Antibiot 59:486–494PubMedGoogle Scholar
  20. Boudart G (1989) Antibacterial activity of sirodesmin PL phytotoxin: application to the selection of phytoxin-deficient mutants. Appl Enivron Microbiol 55:1555–1559Google Scholar
  21. Büchel E, Martini U, Mayer A, Anke H, Sterner O (1998a) Omphalotins B, C, and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuaration of omphalotin A. Tetrahedron 54:5345–5352Google Scholar
  22. Büchel E, Mayer A, Martini U, Anke H, Sterner O (1998b) Structure elucidation of omphalotin, a cyclic dodecapeptide with potent nematicidal activity from Omphalotus olearius. Pest Sci 54:309–311Google Scholar
  23. Buckingham J (2008) (Ed) Dictionary of natural products on DVD, version 17.1. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  24. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2154PubMedGoogle Scholar
  25. Capon RJ, Skene C, Stewart M, Ford J, O'Hair RAJ, Williams L, Lacey E, Gill JH, Heiland K, Friedel T (2003) Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem 1:1856–1862PubMedGoogle Scholar
  26. Che Y, Swenson DC, Gloer JB, Koster B, Malloch D (2001) Pseudodestruxins A and B: new cycllic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64:555–558PubMedGoogle Scholar
  27. Chen CH, Lang G, Mitova MI, Murphy AC, Cole ALJ, Din LB, Blunt JW, Munro MHG (2006) Pteratides I-IV, new cyctotoxic cyclodepsipeptides from the Malaysian basidiomycete Pterula sp. J Org Chem 71:7947–7951PubMedGoogle Scholar
  28. Closse A, Huguenin R (1974) Isolierung und Strukturaufklärung von Chlamydocin. Helv Chim Acta 57:533–545PubMedGoogle Scholar
  29. Cole RJ, Schweikert MA (2003) Diketopiperazines. In: Handbook of secondary fungal metabolites, vol 1. Academic, Amsterdam, pp 145–244Google Scholar
  30. Conder GA, Johnson SS, Nowakowski DS, Blake TE, Dutton FE, Nelson SJ, Thomas EM, Davis JP, Thompson DP (1995) Anthelmintic profile of the cyclodepsipeptide PF1022A in in vitro and in vivo models. J Antibiot 48:820–823Google Scholar
  31. Curtis RW, Stevenson WR, Tuite J (1974) Malformin in Aspergillus niger-infected onion bulbs (Allium cepa). Appl Environ Microbiol 28:362–365Google Scholar
  32. Daferner M (2000) Antibiotisch aktive Sekundärstoffe aus höheren marinen Pilzen. Dissertation, University of KaiserslauternGoogle Scholar
  33. Dalsgaard PW, Blunt JW, Munro MHG, Larsen TO, Christophersen C (2004a) Psychrophilin B and C: cyclic nitropeptides from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 67:1950–1952Google Scholar
  34. Dalsgaard PW, Larsen TO, Frydenvang K, Christophersen C (2004b) Psychrophilin A and cycloaspeptide D, novel cyclic peptides from the psychotolerant fungus Penicillium ribeum. J Nat Prod 67:878–881Google Scholar
  35. Dalsgaard PW, Larsen TO, Christophersen C (2005) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibiot 58:141–144PubMedGoogle Scholar
  36. Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarel MA, Singh SB, Goetz MA, Dombrowski AW, Polishook ED, Schmatz DM (1996) Apicidin, a novel antiprotozoal agent that inhibits parasite histone deacetylase Proc Natl Acad Sci USA 93:13143–31147PubMedGoogle Scholar
  37. Davoli P, Mucci A, Schenetti L, Weber RWS (2005) Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus (Polyporales, Fungi). Phytochemistry 66:817–823PubMedGoogle Scholar
  38. !de Schepper S, Bruwiere H, Verhulst T, Steller U, Andries L, Wouters W, Janicot M, Arts J, van Heusden J (2003) Inhibition of histone deacylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin. J Pharmacol Exp Ther 304:881–888PubMedGoogle Scholar
  39. Degenkolb T, Gams W, Brückner H (2008) Natural cyclopeptaibols and related cyclic tetrapeptides: structural diversity and future prospects. Chem Biodiver 5:693–706Google Scholar
  40. Demain AL, Elander RP (1999) The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19PubMedGoogle Scholar
  41. Denning DW (2002) Echinocandins: a new class of antifungals. J Antimicrob Chemother 49:889–891PubMedGoogle Scholar
  42. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151PubMedGoogle Scholar
  43. Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kamper J, Mueller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18:3332–3345PubMedGoogle Scholar
  44. Eickman N, Clardy J, Cole RJ, Kirksey JW (1975) The structure of fumitremorgin A. Tetrahedron Lett 16:1051–1054Google Scholar
  45. Eisendle M, Schrettl M, Kragl C, Müller D, Illmer P, Haas H (2006) The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell 5:1596–603PubMedGoogle Scholar
  46. Elliott CE, Gardiner DM, Thoma G, Cozijnsen A, van de Wouw A, Howlett BJ (2007) Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol 8:791–802PubMedGoogle Scholar
  47. Ernst-Russell M, Chai CL, Hurne AM, Waring P, Hockless DCR, Elix JA (1999) Structure revision and cytotoxic activity ot the scabrosin esters, epithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust J Chem 52:279–283Google Scholar
  48. Feifel SC, Schmiederer T, Hornbogen T, Berg H, Süssmuth RD, Zocher R (2007) In vitro synthesis of new enniatins: probing the α-d-hydroxy carboxylic acid binding pocket of the multienzyme enniatin synthetase. ChemBioChem 8:1767–1770PubMedGoogle Scholar
  49. Fostel JM, Lartey PA (2000) Emerging novel antifungal agents. Drug Discov Today 5:25–32PubMedGoogle Scholar
  50. Fredenhagen A, Molleyres LP, Böhlendorf B, Laue G (2006) Structure determination of neofrapeptins A to N: peptides with insecticidal activity produced by the fungus Geotrichum candidum. J Antibiot 59:267–280PubMedGoogle Scholar
  51. Fridrichsons J, Mathieson AMCL (1962) The structure of sporidesmin: causative agent of facial eczema in sheep. Tetrahedron Lett 3:1265–1268Google Scholar
  52. Fujie A, Iwamoto T, Muramatsu H, Okudaira T, Nitta K, Nakanishi T, Sakamoto K, Hori Y, Hino M, Hashimoto S, Okuhara M (2000) FR901469, a novel antifungal antibiotic from an unidentified fungus No 11243. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. J Antibiot 53:912–919PubMedGoogle Scholar
  53. Fujie A, Muramatsu H, Yoshimura S, Hashimoto M, Shigematsu N, Takase S (2001) FR901469, a novel antifungal antibiotic from an unidentified fungus No 112434. III. Structure determination. J Antibiot 54:588–594PubMedGoogle Scholar
  54. Gardiner DM, Waring P, Howlett BJ (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151:1021–1032PubMedGoogle Scholar
  55. Gevers W, Kleinkauf H, Lipmann F (1968) The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci USA 63:1335–1342Google Scholar
  56. Glinski M, Hornbogen T, Zocher R (2001) Enzymatic synthesis of fungal N-methylated cyclopeptides and depsipeptides. In: Kirst H, Yeh WK, Zmijewski M (eds) Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 471–497Google Scholar
  57. Gournelis DC, Laskaris GG, Verpoorte R (1998) Cyclopeptide alkaloids In: Herz W, Falk H, Kirby GW, Moore RE, Tamm Ch (eds) Fortschritte der Chemie organischer Naturstoffe, vol 75. Springer, Heidelberg, pp 1–179Google Scholar
  58. Gross ML, McCrery D, Crow F, Tomer KB, Pope MR, Ciuffetti LM, Knoche HW, Daly JM, Dunkle DL (1982) The structure of the toxin from Helminthosporium carbonum. Tetrahedron Lett 51:5381–5384Google Scholar
  59. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedGoogle Scholar
  60. Gupta S, Peiser G, Nakajima T, Hwang Y-S (1994) Characterization of a phytotoxic cyclotetrapeptide, a novel chlamydocin analogue, from Verticillium coccosporum. Tetrahedron Lett 35:6009–6012Google Scholar
  61. Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187PubMedGoogle Scholar
  62. Hagimori K, Fukuda T, Hasegawa Y, Omura S, Tomoda H (2007) Fungal malformins inhibit bleomycin-induced G2 checkpoint in Jurkat cells. Biol Pharm Bull 30:1379–1383PubMedGoogle Scholar
  63. Hashimoto S (2009) Micafungin: a sulfated echinocandin. J Antibiot 62:27–35PubMedGoogle Scholar
  64. Hedge VR, Puar MS, Dai P, Pu H, Patel M, Anthes JC, Richard C, Terracciano J, Das PR, Gullo V (2001) A family of depsipeptide fungal metabolites, as selective and competitive human tachykinin receptor (NK2) antagonists: fermentation, isolation, physico-chemical properties, and biological activity. J Antibiot 54:125–135PubMedGoogle Scholar
  65. Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H (2007) Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity. Mol Plant Pathol 8:163–172PubMedGoogle Scholar
  66. Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H (2009) Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet Biol 46:321–332Google Scholar
  67. Hommel U, Weber H-P, Oberer L, Naegeli HU, Oberhauser B, Foster CA (1996) The 3D-structure of a natural inhibitor of cell adhesion molecule expression. FEBS Lett 379:69–73PubMedGoogle Scholar
  68. Houston DR, Shiomi K, Arai N, Omura S, Peter MG, Turberg A, Synstad B, Eijsink VG, van Aalten DMF (2002) High-resolution structures of a chitinase complex with natural product cyclopentapeptide inhibitors: Mimicry of carbohydrate substrate Proc Natl Acad Sci USA 99:9127–9132PubMedGoogle Scholar
  69. Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404PubMedGoogle Scholar
  70. Huang H, She Z, Lin Y, Vrijmoed LLP, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a Mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699PubMedGoogle Scholar
  71. Hume AM, Chai CLL, Moermann K, Waring P (2002) Influx of calcium through a redox-sensitive plasma membrane channel in thymocytes causes early necrotic cell death induced by the epipolythiodioxopiperazine toxins. J Biol Chem 35:31631–31638Google Scholar
  72. Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053PubMedGoogle Scholar
  73. Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NI, Thebtaranonth Y (2005a) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823Google Scholar
  74. Isaka M, Palasarn S, Rachtawee P, Vimuttipong S, Kongsaeree P (2005b) Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org Lett 7:2257–2260Google Scholar
  75. Isaka M, Palasarn S, Kocharin K, Hywel-Jones NI (2007) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata. J Antibiotics 60:577–581Google Scholar
  76. Ishiyama D, Sato T, Honda R, Senda H, Konno H, Kanazawa S (2000) Glomosporin, a novel antifungal cyclic depsipeptide from Glomospora sp. II. Structure elucidation. J Antibiot 53:525–631PubMedGoogle Scholar
  77. Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yashuda Y, Matsumoto K, Ishii K, Uotani N, Nakai H, Terui A, Yoshimatsu S, Ikenishi Y, Nakagawa Y (1990) Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation. J Antibiot 43:1524–1532PubMedGoogle Scholar
  78. Iwamoto T, Fujie A, Nitta K, Hashimoto S, Okuhara M, Kohsaka M (1994a) WF11899A, B and C, novel antifungal lipopeptides II. Biological properties. J Antibiot 45:1092–1097Google Scholar
  79. Iwamoto T, Fujie A, Sakamota K, Tsurumi Y, Shigematsu N, Yamashita M, Hashimoto S, Okuhara M, Kohsaka M (1994b) WF11899A, B and C, novel antifungal lipopeptides I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot 47:1084–1091Google Scholar
  80. Jiang Z, Barret MO, Boyd KG, Adams DR, Boid ASF, Burgess JG (2002) JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry 60:33–38PubMedGoogle Scholar
  81. Johnson MD, Perfect JR (2003) Caspofungin: first approved agent in a new class of antifungals. Expert Opin Pharmacother 4:807–823PubMedGoogle Scholar
  82. Kaida K, Fudou R, Kameyama T, Tubaki K, Suzuki Y, Ojika M, Sakagami Y (2001) New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquantic hyphomycete, Clavariopsis aquatica. J Antibiot 54:17–21PubMedGoogle Scholar
  83. Kajimura Y, Aoki T, Kuramochi K, Kobayashi S, Sugawara F, Watanabe N, Arai T (2008) Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity. J Antibiot 61:330–333PubMedGoogle Scholar
  84. Kamei K, Watanabe A (2005) Aspergillus mycotoxins and their effect on the host. Med Mycol 43[Suppl 1]:95–99Google Scholar
  85. Kanasaki R, Abe F, Kobayashi M, Katsuoka M, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006a) FR220897 and FR220899, novel antifungal lipopeptides from Coleophoma empetri No. 14573. J Antibiot 59:149–157Google Scholar
  86. Kanasaki R, Kobayashi M, Fujine K, Sato I, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S (2006b) FR227673 and FR190293, novel antifungal lipopeptides from Chalara sp. No22210 and Tolypocladium parasiticum No 16616. J Antibiot 59:158–167Google Scholar
  87. Kanasaki R, Sakamota K, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006c) FR209602 and related compounds, novel antifungal lipopeptides from Coleophoma crateriformis No. 738. J Antibiot 59:137–144Google Scholar
  88. Keller U, Tudzynski P (2002) Ergot alkaloids. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 157–181Google Scholar
  89. Keller-Juslen C, Kuhn M, Loosli HR, Petcher TJ, Weber HP, von Wartburg A (1976) Struktur des Cyclopeptid-Antibiotikums SL 7810 (= Echinocandin B) Tetrahedron Lett 17:4147–4150Google Scholar
  90. Kershaw M, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invert Pathol 74:213–223Google Scholar
  91. Kleinkauf H, von Döhren H (1997) Peptide antibiotics. In: Kleinkauf H, von Döhren H (eds) Products of secondary metabolism. Biotechnology, vol 7. VCH, Weinheim, pp 277–322Google Scholar
  92. Kleinwachter P, Dahse HM, Luhmann U, Schlegel B, Dornberger K (2001) Epicorazine C, an antimicrobial metabolite from Stereum hirsutum HKI 0195. J Antibiot 54:521–525PubMedGoogle Scholar
  93. Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Vhurchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924PubMedGoogle Scholar
  94. Kobbe B, Cushman M, Wogan GN, Demain AL (1977) Production and antibacterial activity of malformin C, a toxic metabolite of Aspergillus niger. Appl Environ Microbiol 33:996–997PubMedGoogle Scholar
  95. Kürnsteiner H, Zinner M, Kück U (2002) Immunosuppressants. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 129–155Google Scholar
  96. Lee KK, Gloer JB Scott JA, Malloch D (1995) Petriellin A: a novel antifungal depsipeptide from the coprophilous fungus Petriella sordida. J Org Chem 60:5384–5385Google Scholar
  97. Lewis JR (2002) Amaryllidaceae, Sceletium, imidazole, oxazole, thiazole, peptide and miscellaneous alkaloids. Nat Prod Rep 19:223–258PubMedGoogle Scholar
  98. Li C, Oberlies NH (2005) The most widely recognized mushroom: chemistry of the genus Amanita. Life Sci 78:532–538PubMedGoogle Scholar
  99. Li X, Kim S-K, Nam KW, Kang JS, Choi HD, Son BW (2006) A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus Pseudallescheria. J Antibiot 59:248–250PubMedGoogle Scholar
  100. Li Y, Li X, Kim S-K, Kang JS, Choi HD, Rho JR, Son BW (2004) Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Pharm Bull 52:375–376PubMedGoogle Scholar
  101. Liermann JC, Kolshorn H, Antelo L, Hof C, Anke H, Opatz T (2009) Omphalotins E-I, oxidatively modified nematicidal cyclopeptides from Omphalotus olearius. Eur J Org Chem 2009:1256–1262Google Scholar
  102. Lira SP, Vita-Marques AM, Seleghim MHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado SRP, Ireland CM, Berlinck RGS (2006) New destruxins from the marine-derived fungus Beauveria felina. J Antibiot 59:553–563PubMedGoogle Scholar
  103. Liu J-K (2005) N-containing compounds of macromycetes. Chem Rev 105:2723–2744PubMedGoogle Scholar
  104. Lorenz P, Jensen PR, Fenical W (1998) Mactanamide, a new fungistatic diketopiperazine produced by a marine Aspergillus sp. Nat Prod Lett 12:55–60Google Scholar
  105. Maligie MA, Selitrennikoff CP (2005) Cryptococcus neoformans resistance to echinocandins: (1,3) β-glucan synthase activity is senitive to echinocandins. Antimicrob Agents Chemother 49:2851–2856PubMedGoogle Scholar
  106. Malmstrom J, Ryager A, Anthoni U, Nielsen PH (2002) Unguisin C, a GABA-containing cyclic peptide from the fungus Emericella unguis. Phytochemistry 60:869–887PubMedGoogle Scholar
  107. Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 64:9923–9932Google Scholar
  108. Matha V, Jegorov A, Weiser J, Pillai JS (1992) The mosquitocidal activity of conidia of Tolypocladium tundrense and Tolypocladium terricola. Cytobios 69:163–170PubMedGoogle Scholar
  109. Matsuda D, Namatame I, Tomoda H, Kobayashi S, Zocher R, Kleinkauf H, Omura S (2004) New beauverolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979. J Antibiot 57:1–9PubMedGoogle Scholar
  110. Mayer A, Sterner O, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. 1. Fermentation and biological activity. Nat Prod Lett 10:25–33Google Scholar
  111. Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In vitro and in vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pest Sci 55:27–30Google Scholar
  112. Miyado S, Kawasaki H, Aoyagi K, Yaguchi T, Okada T, Sugiyama J (2000) Taxonomic position of the fungus producing the anthelmintic PF1022 based on the 18S rRNA gene base sequence. Nippon Kinzoku Gakkai Kaiho 41:183–188Google Scholar
  113. Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama S, Miyoshi E, Yamamura S (1993) The structures of bioactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull Chem Soc Jpn 66:3041–3046Google Scholar
  114. Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui R, Mura S (2006) Verticilide: elucidation of absolute configuration and total synthesis. Org Lett 8:5601–5604PubMedGoogle Scholar
  115. Mori H, Urano Y, Abe F, Furukawa S, Tsurumi Y, Sakamoto K, Hashimoto M, Takase S, Hino M, Fujii T (2003) FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC) 1. Taxonomy, fermentation, isolation, and biological activities. J Antibiot 56:72–79PubMedGoogle Scholar
  116. Morino T, Masuda A, Yamada M, Nishimoto Y, Nishikiori T, Saito S, Shimada (1994) Stevastelins, novel immunosuppresssants produced by Penicillium. J Antibiot 47:1341–1343PubMedGoogle Scholar
  117. Morris SA, Schwartz RE, Sesin DF, Masurekar P, Hallada TC, Schmatz DM, Bartizal K, Hensens OD, Zink DL (1994) Pneumocandin D0, a new antifungal agent and potent inhibitor of Pneumocystis carinii. J Antibiot 47:755–764PubMedGoogle Scholar
  118. Morrison VA (2006) Echinocandin antifungals: review and update. Expert Rev Anti Infect Ther 4:325–342PubMedGoogle Scholar
  119. Namatame I, Zomoda H, Ishibashi S, Omura S (2004) Antiatherogenic activity of fungal beauverolides, inhibitors of lipid droplet accumulation in macrophages. Proc Natl Acad Sci USA 101:737–742PubMedGoogle Scholar
  120. Nilanonta C, Isaka M, Chanphen R, Thong-orn N, Tanticharoen M, Thebtaranonth Y (2003) Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis. Tetrahedron 59:1015–1020Google Scholar
  121. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279PubMedGoogle Scholar
  122. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853PubMedGoogle Scholar
  123. Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353PubMedGoogle Scholar
  124. Ohshiro T, Rudel LL, Omura S, Tomoda H (2007) Selectivity of microbial acyl-CoA:cholesterol acyltransferase inhibitors towards isoenzymes. J Antibiot 60:43–51PubMedGoogle Scholar
  125. Ohyama T, Kurihara Y, Ono Y, Ishikawa T, Miyakoshi S, Hamano K, Arai M, Suzuki T, Igari H, Suzuki Y, Inukai M (2000) Arborcandins A, B, C, D, E, and F, novel 1,3-beta-glucan synthase inhibitors: production and biological activities. J Antibiot 53:1108–1116PubMedGoogle Scholar
  126. Panaccione DC, Cipoletti JR, Sedlock AB, Blemings KP, Schradl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J. Agric Food Chem 54:4582–4587PubMedGoogle Scholar
  127. Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61[Suppl 1]:i19–i30PubMedGoogle Scholar
  128. Patil BB, Wakharkar RD, Chincholkar SB (1995) Siderophores of Cunninghamella blakesleeana NCIM 687. World J Microbiol Biotechnol 15:265–268Google Scholar
  129. Pedley KF, Walton JD (2001) Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc Natl Acad Sci USA 98:14174–14179PubMedGoogle Scholar
  130. Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596PubMedGoogle Scholar
  131. Pomilio AB, Battista ME, Vitale AA (2006) Naturally-occurring cycopeptides: structures and bioactivity. Curr Org Chem 10:2075–2121Google Scholar
  132. Prasad C (1995) Bioactive cyclic peptides. Peptides 16:151–164PubMedGoogle Scholar
  133. Rees NH, Penfold DJ, Rowe ME, Chowdhry BZ, Cole SCJ, Samuels RI, Turner DL (1996) NMR studies of the conformation of destruxin A in water and in acetonitrile. Magn Reson Chem 34:237–241Google Scholar
  134. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison DC, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142Google Scholar
  135. Roth BD (1998) ACAT inhibitors: evolution from cholesterol-absorption inhibitors to antiatherosclerotic agents. Drug Discov Today 3:19–25Google Scholar
  136. Rouxel T, Chupeau Y, Fritz R, Kollmann A, Bousquet J-F (1988) Biological effects of sirodesmin PL, a phytotoxin produced by Leptosphaeria maculans. Plant Sci 57:45–53Google Scholar
  137. Rüegger A, Kuhn M, Lichti H, Loosli HR, Huguenin R, Quiquerez C, von Wartburg A (1975) Cyclosporin A, ein immunsuppressiv wirksamer Peptidmetabolit aus Trichoderma polysporum (Link ex Pers.) Rifai. Helv Chim Acta 59:1075–1092Google Scholar
  138. Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WP, Krucken J, Harder A, Samson-Himmelstjerna von G, Wiegand H, Wunderlich F (2001) Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J 15:1332–1334PubMedGoogle Scholar
  139. Saito T, Hirai H, Kim Y-J, Kojima Y, Matsunaga Y, Nishida H, Sakakibara T, Suga O, Sujaku T, Kojima N (2002) CJ 15208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J Antibiot 55:847–854PubMedGoogle Scholar
  140. Samson-Himmelstjerna von G, Harder A, Sangster NC, Coles GC (2005) Efficacy of two cyclooctadepsipeptides, PF022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology 130:343–347Google Scholar
  141. Sarabia F, Chammaa S, Sánchez Ruiz A, Martín Ortiz L, López Herrera FJ (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11:1309–1332PubMedGoogle Scholar
  142. Sasaki T, Takagi M, Yaguchi T, Miyado S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022. J Antibiot 45:692–697PubMedGoogle Scholar
  143. Sato T, Ishiyama D, Honda R, Senda H, Konno H, Tokumasu S, Kanazawa S (2000) Glomosporin, a novel cyclic depsipeptide from Glomospora sp. I. Production, isolation, physico-chemical properties, and biological activities. J Antibiot 53:597–602PubMedGoogle Scholar
  144. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedGoogle Scholar
  145. Scherkenbeck J, Jeschke P, Harder A (2002) PF1022A and related cyclodepsipeptides - a novel class of anthelmintics. Curr Topics Med Chem 7:759–777Google Scholar
  146. Schmidt FR (2002) Beta-lactam antibiotics: aspects of manufacture and therapy. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 69–91Google Scholar
  147. Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN Jr, Haynes K, Haas H (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3:1195–1207PubMedGoogle Scholar
  148. Scott PM, Polonsky J, Merrien MA (1979) Configuration of the 3,12 double bond of roquefortine. J Agric Food Chem 27:201–202Google Scholar
  149. Seto Y, Takahasi K, Matsuura H, Kogami Y, Yada H, Yoshihara T, Nabeta K (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloe typhina. Biosci Biotechnol Biochem 71:1470–1475PubMedGoogle Scholar
  150. Shiono Y, Tschuchinari M, Shimanuki K, Miyajima T, Murayama T, Koseki T, Laatsch H, Funakoshi T, Takanami K, Suzuki K (2007) Fusaristatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J Antibiot 60:309–316PubMedGoogle Scholar
  151. Singh SB, Zink DL, Liesch JM, Mosley RT, Dombrowski AW, Bills GF, Darkin-Rattray SJ, Schmatz DM, Goetz MA (2002) Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem 67:815–825PubMedGoogle Scholar
  152. Skrobek A, Butt TM (2005) Toxicity testing of destruxins and crude extracts from the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:23–28PubMedGoogle Scholar
  153. Sterner O, Etzel W, Mayer A, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. II. Isolation and structure determination. Nat Prod Lett 10: 33–38Google Scholar
  154. Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Müllbacher A, Gallin JI, Simon MM, Kwon-Chung KJ (2007) Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 6:1562–1569PubMedGoogle Scholar
  155. Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738PubMedGoogle Scholar
  156. Takahashi C, Numata A, Matsumura E, Minoura K, Eto H, Shingu T, Ito T, Hasgawa T (1994) Leptosins I and J, cytotoxic substances produced by a Leptosphaeria sp. physico-chemical properties and structures. J Antibiot 47:1242–1249PubMedGoogle Scholar
  157. Tan LT, Cheng XC, Jensen PR, Fenical W (2003) Scytalidamides A and B, new cytotoxic cyclic heptapeptides from a marine fungus of the genus Scytalidium. J Org Chem 68:8767–8773PubMedGoogle Scholar
  158. Tan NH, Zhou J (2006) Plant cyclopeptides. Chem Rev 106:840–895PubMedGoogle Scholar
  159. Tan RX, Jensen PR, Williams PG, Fenical W (2004) Isolation and structure assignments of rostratins A–D, cytotoxic disulfides produced by the marine-derived fungus Exserohilum rostratum. J Nat Prod 67:1374–1382PubMedGoogle Scholar
  160. Tani H, Fujii Y, Nakajima H (2001) Chlamydocin analogues from the soil fungus Peniophora sp.: structures and plant growth-retardant activity. Phytochemistry 58:305–310PubMedGoogle Scholar
  161. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411PubMedGoogle Scholar
  162. Tobiasen C, Aahman J, Ravnholt KS, Bjerrum MJ, Grell MN, Giese H (2007) Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43–58PubMedGoogle Scholar
  163. Traber R, Dreyfuss MM (1996) Occurrence of cyclosporins and cyclosporin-like peptolides in fungi. J Indust Microbiol 17:397–401Google Scholar
  164. Turner WB, Aldridge DC (1983) Diketopiperazines and related compounds. In: Fungal metabolites II. Academic, London, pp 405–423Google Scholar
  165. Ueno T, Nakashima T, Hayashi Y, Fukami H (1975) Structures of AM-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria mali. Agric Biol Chem 39:1115–1122Google Scholar
  166. Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invert Pathol 80:177–187Google Scholar
  167. Waring P, Beaver J (1996) Gliotoxin and related epipolythiodioxopiperazines. Gen Pharmacol 27:1311–1316PubMedGoogle Scholar
  168. Waring P, Eichner RD, Müllbacher A (1988) The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 8:499–524PubMedGoogle Scholar
  169. Weber D, Erosa G, Sterner O, Anke T (2006) Cyclindrocyclin A, a new cytotoxic cyclopeptide from Cylindrocarpon sp. J Antibiot 59:495–499PubMedGoogle Scholar
  170. Welker M, von Döhren H (2006) Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563PubMedGoogle Scholar
  171. Welzel K, Eisfeld K, Antelo L, Anke T, Anke H (2005) Characterization of the ferrichrome A biosynthetic gene cluster in the homobasidiomycete Omphalotus olearius. FEMS Microbiol Lett 249: 157–163PubMedGoogle Scholar
  172. Winkelmann W, Drechsel H (1997) Microbial siderophores. In: Kleinkauf H, von Döhren H (eds) Products of secondary metabolism. Biotechnology, vol 7. VCH, Weinheim, pp 199–246Google Scholar
  173. Wolstenholme WA, Vining LC (1966) Determination of amino acid sequences in oligopeptides by mass spectrometry VIII. The structure of isariin. Tetrahedron Lett 7:2785–2791Google Scholar
  174. Yano T, Aoyagi A, Kozuma S, Kawamura Y, Tanaka I, Suzuki Y, Takamatsu Y, Takatsu T, Inukai M (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:136–142Google Scholar
  175. Yin WQ, Zou JM, She ZG, Vrijmoed LLP, Jones EBG, Lin YC (2005) Two cyclic peptides produced by the endophytic fungus 2221 from Castaniopsis fissa on the South China sea coast. Chin Chem Lett 16:219–222Google Scholar
  176. Yoshioka H, Nakatsu K, Sato M, Tatsuno T (1973) The molecular structure of cyclochlorotine, a toxic chlorine-containing peptapentide. Chem Lett 12:1319–1322Google Scholar
  177. Zhang P, Chen Z, Hu J, Wei B, Zhang Z, Hu W (2005) Production and characterization of amanitin toxins from a pure culture of Amanita exitialis. FEMS Microbiol Lett 252:223–228PubMedGoogle Scholar
  178. Zheng CJ, Oark SH, Koshino H, Kim YH, Kim WG (2007) Verticillin G, a new antibacterial compound from Bionectria byssicola. J Antibiot 60:61–64PubMedGoogle Scholar
  179. Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596Google Scholar
  180. Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for Biotechnology and Drug Research, IBWF e.V.KaiserslauternGermany

Personalised recommendations