Identification of Fungicide Targets in Pathogenic Fungi

Chapter
Part of the The Mycota book series (MYCOTA, volume 15)

Abstract

The rapid emergence of fungicide resistance has brought a strong demand for plant protectants with a new mode of action. One of the challenges for modern plant pathology research is the identification of genes and gene products essential for the establishment of pathogenic interactions between host and pathogen. Genome-wide technologies, such as transcriptomics, metabolomics, and proteomics represent a new opportunity to identify such targets in phytopathogenic fungi. This chapter reviews genome-wide approaches that have emerged in the post-genomics era, e.g. comparative genomics and gene expression profiling experiments such as microarray-based transcriptional profiling, serial analysis of gene expression, and massively parallel signature sequencing. It also discusses prospects for exploiting these modern technologies for the development of plant protectants and system biology.

References

  1. Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318CrossRefPubMedGoogle Scholar
  2. Anke T, Steglich W (1999) Strobilurins and oudemansins. In: Grabley S, Thiericke R (eds) Drug discovery from nature. Springer, Heidelberg, pp 320–334Google Scholar
  3. Asif AR, Oellerich M, Amstrong VW, Riemenschneider B, Monod M, Reichard U (2006) Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J Proteome Res 5:954–962CrossRefPubMedGoogle Scholar
  4. Barker KS, Rogers PD (2005) Application of deoxyribonucleic acid microarray analysis to the study of azole antifungal resistance in Candida albicans. Methods Mol Med 118:45–56PubMedGoogle Scholar
  5. Becker WF, von Jagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: New inhibitors of the bc1 segment of the respiratory chain with a E-ß-methoxyacrylate system as common structural element. FEBS Lett 132:329–333CrossRefPubMedGoogle Scholar
  6. Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley–Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417CrossRefPubMedGoogle Scholar
  7. Both M, Eckert SE, Csukai M, Müller E, Dimopoulos G, Spanu PD (2005) Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants. Mol Plant Microbe Interact 18:125–133CrossRefPubMedGoogle Scholar
  8. Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15CrossRefPubMedGoogle Scholar
  9. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran Ka (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634CrossRefPubMedGoogle Scholar
  10. Bruneau JM, Magnin T, Tagat E, Legrand R, Bernard M, Diaquin M, Fudali C, Latgé JP (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidyl-inositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22:2812–2823CrossRefPubMedGoogle Scholar
  11. Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu ZY, Chen WS, Jiang YY (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589CrossRefPubMedGoogle Scholar
  12. Chabane S, Sarfati J, Ibrahim-Granet O, Du C, Schmidt C, Mouyna I, Prevost MC, Calderone R, Latgé JP (2006) Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl Environ Biol 72:3259–3267CrossRefGoogle Scholar
  13. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394CrossRefPubMedGoogle Scholar
  14. Cramer KL, Gerrald QD, Nichols CB, Price MS, Alspaugh JA (2006) Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot Cell 5:1147–1156CrossRefPubMedGoogle Scholar
  15. da Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MH, Kim HS, Nierman WC, Goldman GH (2006) Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 50:32–44CrossRefPubMedGoogle Scholar
  16. De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670CrossRefPubMedGoogle Scholar
  17. Debieu D, Bach J, Hugon M, Malosse C, Leroux P (2001) The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pest Manag Sci 57:1060–1067CrossRefPubMedGoogle Scholar
  18. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686CrossRefPubMedGoogle Scholar
  19. Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 43:605–617CrossRefPubMedGoogle Scholar
  20. Gioti A, Simon A, Le Pêcheur P, Giraud C, Pradier JM, Viaud M, Levis C (2006) Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity. J Mol Biol 358:372–386 Erratum in: J Mol Biol 364:550CrossRefPubMedGoogle Scholar
  21. Gowda M, Venu RC, Raghupathy MB, Nobuta K, Li H, Wing R, Stahlberg E, Couglan S, Haudenschild CD, Dean R, Nahm BH, Meyers BC, Wang GL (2006) Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods. BMC Genomics 8:310CrossRefGoogle Scholar
  22. Grosse C, Heinekamp T, Kniemeyer O, Gehrke A, Brakhage AA (2008) Protein kinase A regulates growth, sporulation, and pigment formation in Aspergillus fumigatus. Appl Environ Microbiol 74:4923–4933CrossRefPubMedGoogle Scholar
  23. Güldener U, Seong KY, Boddu J, Cho S, Trail F, Xu JR, Adam G, Mewes HW, Muehlbauer GJ, Kistler HC (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet Biol 43:316–325CrossRefPubMedGoogle Scholar
  24. Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153CrossRefPubMedGoogle Scholar
  25. Howard RJ, Ferrari MA (1989) Role of melanin in appressorium function. Exp Mycol 13:403–418CrossRefGoogle Scholar
  26. Hu G, Steen BR, Lian T, Sham AP, Tam N, Tangen KL, Kronstad JW (2007) Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog 3:e42CrossRefPubMedGoogle Scholar
  27. Hwang L, Hocking-Murray D, Bahrami AK, Andersson M, Rine J, Sil A (2003) Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol Biol Cell 14:2314–2326CrossRefPubMedGoogle Scholar
  28. Irie T, Matsumura H, Terauchi R, Saitoh H (2003) Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol Genet Genomics 270:181–189CrossRefPubMedGoogle Scholar
  29. Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2003) RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16:769–776CrossRefPubMedGoogle Scholar
  30. Kim Y, Nandakumar MP, Marten MR (2008) The state of proteome profiling in the fungal genus Aspergillus. Brief Funct Genomics Proteomics 7:87–94CrossRefGoogle Scholar
  31. Larraya LM, Boyce KJ, So A, Steen BR, Jones S, Marra M, Kronstad JW (2005) Serial analysis of gene expression reveals conserved links between protein kinase A, ribosome biogenesis, and phosphate metabolism in Ustilago maydis. Eukaryot Cell 4:2029–2043CrossRefPubMedGoogle Scholar
  32. Liebmann B, Müller M, Braun A, Brakhage AA (2004) The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun 72:5193–5203CrossRefPubMedGoogle Scholar
  33. Köller W (1992) Antifungal agents with target sites in sterol functions and biosynthesis. In: Köller W (ed) Target sites of fungicide action CRC, Boca Raton, pp 119–206Google Scholar
  34. Lee S, Gustafson G, Skamnioti P, Baloch R, Gurr S (2008) Host perception and signal transduction studies in wild-type Blumeria graminis f. sp. hordei and a quinoxyfen-resistant mutant implicate quinoxyfen in the inhibition of serine esterase activity. Pest Manag Sci 64:544–555CrossRefPubMedGoogle Scholar
  35. Lees ND, Bard M, Kirsch DR (1999) Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 34:33–47PubMedGoogle Scholar
  36. Lian T, Simmer MI, D'Souza CA, Steen BR, Zuyderduyn SD, Jones SJ, Marra MA, Kronstad JW (2005) Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 55:1452–1472CrossRefPubMedGoogle Scholar
  37. Liebmann B, Müller M, Braun A, Brakhage AA (2004) The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun 72:5193–203CrossRefPubMedGoogle Scholar
  38. Linksda Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MH, Kim HS, Nierman WC, Goldman GH (2006) Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 50:32–44CrossRefGoogle Scholar
  39. Moran G, Stokes C, Thewes S, Hube B, Coleman DC, Sullivan D (2004) Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150:3363–3382CrossRefPubMedGoogle Scholar
  40. Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latgé JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889CrossRefPubMedGoogle Scholar
  41. Moyrand F, Janbon G (2004) UGD1, encoding the Cryptococcus neoformans UDP-glucose dehydrogenase, is essential for growth at 37 degrees C and for capsule biosynthesis. Eukaryot Cell 3:1601–1608CrossRefGoogle Scholar
  42. Nakasako M, Motoyama T, Kurahashi Y, Yamaguchi I (1998) Cryogenic X-ray crystal structure analysis for the complex of scytalone dehydratase of a rice blast fungus and its tight-binding inhibitor, carpropamid: the structural basis of tight-binding inhibition. Biochemistry 37:9931–9939CrossRefPubMedGoogle Scholar
  43. Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68:1348–1365CrossRefPubMedGoogle Scholar
  44. Nguyen VQ, Sil A (2008) Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 105:4880–4885CrossRefPubMedGoogle Scholar
  45. Odenbach D, Breth B, Thines E, Weber RWS, Anke H, Foster AJ (2007) The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol 64:293–307CrossRefPubMedGoogle Scholar
  46. Odenbach D, Thines E, Anke H, Foster AJ (2009) The Magnaporthe grisea class VII chitin synthase is required for normal appressorial development and function. Mol Plant Pathol 10:81–94CrossRefPubMedGoogle Scholar
  47. Oh Y, Donofrio N, Pan H, Coughlan S, Brown DE, Meng S, Mitchell T, Dean RA (2008) Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae.Genome Biol 9:R85CrossRefPubMedGoogle Scholar
  48. Ramage G, Wickes BL, Lopez-Ribot JL (2001) Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab 20:42–44PubMedGoogle Scholar
  49. Ramage G, Saville SP, Wickes BL, López-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463CrossRefPubMedGoogle Scholar
  50. Rogers PD, Barker KS (2002) Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob Agents Chemother 46:3412–3417CrossRefPubMedGoogle Scholar
  51. Seong KY, Zhao X, Xu JR, Güldener U, Kistler HC (2008) Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 45:389–399CrossRefPubMedGoogle Scholar
  52. Stead D, Findon H, Yin Z, Walker J, Selway L, Cash P, Dujon BA, Hennequin C, Brown AJ, Haynes K (2005) Proteomic changes associated with inactivation of the Candida glabrata ACE2 virulence-moderating gene. Proteomics 5:1838–1848CrossRefPubMedGoogle Scholar
  53. Takano Y, Choi WB, Mitchell TK, Okuno T, Dean RA (2003) Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Mol Plant Pathol 4:337–346CrossRefPubMedGoogle Scholar
  54. Thines E, Anke H, Weber RWS (2004) Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycol Res 108:14–25CrossRefPubMedGoogle Scholar
  55. Thomas SW, Glaring MA, Rasmussen SW, Kinane JT, Oliver RP (2002) Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE). Mol Plant Microbe Interact 15:847–856CrossRefPubMedGoogle Scholar
  56. Thompson JE, Fahnestock S, Farrall L, Liao DI, Valent B, Jordan DB (2000) The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea. J Biol Chem 275:34867–34872CrossRefPubMedGoogle Scholar
  57. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487CrossRefPubMedGoogle Scholar
  58. Wheeler IE, Hollomon DW, Gustafson G, Mitchell JC, Longhurst C, Zhang Z, Gurr S (2003) Quinoxyfen perturbs signal transduction in barley powdery mildew (Blumeria graminis f. sp. hordei). Mol Plant Pathol 4:177–186CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institut für Biotechnologie und Wirkstoff-Forschung e.V.Institute for Biotechnology and Drug ResearchKaiserslauternGermany

Personalised recommendations