Skip to main content

The Rationale Behind Seeking Inspiration from Nature

  • Chapter
Nature-Inspired Algorithms for Optimisation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 193))

Abstract

There are currently numerous heuristic algorithms for combinatorial optimisation problems which are commonly described as nature-inspired. Parallels can certainly be drawn between these algorithms and various natural processes, but the extent of the natural inspiration is not always clear. This chapter attempts to clarify what it means to say an algorithm is nature-inspired. Additionally, we will discuss the features of nature which make it a valuable resource in the design of successful new algorithms. Not only does nature provide processes which can be used for optimisation, but it is also a popular source of useful metaphors, which assist the designer. Finally, the history of some well-known algorithms will be discussed, with particular attention to the role nature has played in their development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, T.H.: (physio)logical circuits: The intellectual origins of the mcculloch–pitts neural networks. Journal of the History of the Behavioral Sciences 38(1), 3–25 (2002)

    Article  MathSciNet  Google Scholar 

  2. Angus, D.: Ant colony optimisation: From biological inspiration to an algorithmic framework. Tech. rep., Swinburne University of Technology (2006)

    Google Scholar 

  3. Arbib, M.: Artificial intelligence and brain theory: Unities and diversities. Annals of Biomedical Engineering 3(3), 238–274 (1975)

    Article  MathSciNet  Google Scholar 

  4. Atmar, W.: Notes on the simulation of evolution. Neural Networks, IEEE Transactions on 5(1), 130–147 (1994)

    Article  Google Scholar 

  5. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)

    Article  Google Scholar 

  6. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Animal behaviour 76, 201–215 (2008)

    Article  Google Scholar 

  7. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports-Review Section of Physics Letters 424(4-5), 175–308 (2006)

    MathSciNet  Google Scholar 

  8. Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelligence 119(1-2), 275–286 (2000)

    Article  MATH  Google Scholar 

  9. Bohm, D., Peat, D.: Science, Order, and Creativity. Routledge (2000)

    Google Scholar 

  10. Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)

    Article  Google Scholar 

  11. Box, G.E.P.: Evolutionary operation: A method for increasing industrial productivity. Applied Statistics 6(2), 81–101 (1957)

    Article  Google Scholar 

  12. Bremermann, H.J., Rogson, M., Salaff, S.: Global properties of evolution processes. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 314–352. Wiley/ IEEE Press (1998)

    Google Scholar 

  13. de Castro, L.N.: Fundamentals of natural computing: an overview. Physics of Life Reviews 4(1), 1–36 (2007)

    Article  Google Scholar 

  14. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)

    Article  Google Scholar 

  15. Cordón, O., Herrera, F., Stützle, T.: A review of the ant colony optimization metaheuristic: Basis, models and new trends. Mathware & Soft Computing 9, 141–175 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Crosby, J.L.: Computers in the study of evolution. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 230–254. Wiley/ IEEE Press (1998)

    Google Scholar 

  17. Darwin, C.: The Origin of Species. Avenel Books (1979)

    Google Scholar 

  18. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior 3(2), 159–168 (1990)

    Article  Google Scholar 

  19. Dobzhansky, T.: Biology, molecular and organismic. American Zoologist 4, 443–452 (1964)

    Google Scholar 

  20. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 26(1), 29–41 (1996)

    Article  Google Scholar 

  21. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., May, A.: Neuroplasticity: Changes in grey matter induced by training - newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature 427(6972), 311–312 (2004)

    Article  Google Scholar 

  22. El-Hani, C.N., Emmeche, C.: On some theoretical grounds for an organism-centered biology: Property emergence, supervenience, and downward causation. Theory in Biosciences 119(3-4), 234–275 (2000)

    Article  Google Scholar 

  23. Flake, G.W.: The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, Cambridge (2000)

    Google Scholar 

  24. Fogel, D.B.: Evolutionary programming–an introduction and some curent directions. Statistics and Computing 4(2), 113–129 (1994)

    Article  Google Scholar 

  25. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks 5(1), 3–14 (1994)

    Article  Google Scholar 

  26. Fogel, D.B. (ed.): Evolutionary Computation: The Fossil Record. Wiley-IEEE Press (1998)

    Google Scholar 

  27. Fogel, D.B.: What is evolutionary computation? Spectrum, IEEE 37(2), 26, 28–32 (2000)

    MathSciNet  Google Scholar 

  28. Fogel, D.B.: In memoriam Alex S. Fraser [1923-2002]. IEEE Transactions on Evolutionary Computation 6(5), 429–430 (2002)

    Article  Google Scholar 

  29. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through a simulation of evolution. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 230–254. Wiley/ IEEE Press (1998)

    Google Scholar 

  30. Fraser, A.S.: Monte carlo analyses of genetic models. Nature 181, 208–209 (1958)

    Article  Google Scholar 

  31. Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of chaos, Washington, D.C, AAAS (1990)

    Google Scholar 

  32. Holland, J.H.: Adaptation in natural and artificial systems, 3rd edn. MIT Press, Cambridge (1992)

    Google Scholar 

  33. Holland, J.H.: Genetic algorithms. Scientific American 267, 66–72 (1992)

    Article  Google Scholar 

  34. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  35. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52(3), 141–152 (1985)

    MATH  MathSciNet  Google Scholar 

  36. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  37. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  38. Koch, C., Laurent, G.: Complexity and the nervous system. Science 284(5411), 96–98 (1999)

    Article  Google Scholar 

  39. Lotka, A.J.: Contribution to the energetics of evolution. Proceedings of the National Academy of Sciences of the United States of America 8(6), 147–151 (1922)

    Article  Google Scholar 

  40. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology 5(4), 115–133 (1943)

    MATH  MathSciNet  Google Scholar 

  41. Perkins, D.: Archimedes’ Bathtub. W.W. Norton & Company (2000)

    Google Scholar 

  42. Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317(6035), 314–319 (1985)

    Article  Google Scholar 

  43. Rechenberg, I.: Cybernetic solution path of an experimental problem. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record. Wiley/ IEEE Press (1998)

    Google Scholar 

  44. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph 21(4), 25–34 (1987)

    Article  MathSciNet  Google Scholar 

  45. Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annual review of neuroscience 27, 169–192 (2004)

    Article  Google Scholar 

  46. Rogers, D.: Weather prediction using a genetic memory. Tech. rep., Research Institute for Advance Computer Science, NASA Ames Research Center (1990)

    Google Scholar 

  47. Schwefel, H.P.: Deep insight from simple models of evolution. Biosystems 64(1-3), 189–198 (2002)

    Article  Google Scholar 

  48. Simonton, D.K.: Creativity in Science. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  49. Smith, J.E.: Coevolving memetic algorithms: A review and progress report. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 37(1), 6–17 (2007)

    Article  Google Scholar 

  50. Smith, K.A.: Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. on Computing 11(1), 15–34 (1999)

    Article  MATH  Google Scholar 

  51. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolutionary Computation 10(1), 1–34 (2002)

    Article  Google Scholar 

  52. Whitacre, J.M., Sarker, R.A., Pham, Q.T.: The self-organization of interaction networks for nature-inspired optimization. IEEE Transactions on Evolutionary Computation 12(2), 220–230 (2008)

    Article  Google Scholar 

  53. Wilson, E.O.: The Diversity of Life. Belknap Press of Harvard University Press, Cambridge (1992)

    Google Scholar 

  54. Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  55. Wright, S.: Evolution in mendelian populations. Bulletin of Mathematical Biology 52(1), 241–295 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steer, K.C.B., Wirth, A., Halgamuge, S.K. (2009). The Rationale Behind Seeking Inspiration from Nature. In: Chiong, R. (eds) Nature-Inspired Algorithms for Optimisation. Studies in Computational Intelligence, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00267-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00267-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00266-3

  • Online ISBN: 978-3-642-00267-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics