Abstract
There are currently numerous heuristic algorithms for combinatorial optimisation problems which are commonly described as nature-inspired. Parallels can certainly be drawn between these algorithms and various natural processes, but the extent of the natural inspiration is not always clear. This chapter attempts to clarify what it means to say an algorithm is nature-inspired. Additionally, we will discuss the features of nature which make it a valuable resource in the design of successful new algorithms. Not only does nature provide processes which can be used for optimisation, but it is also a popular source of useful metaphors, which assist the designer. Finally, the history of some well-known algorithms will be discussed, with particular attention to the role nature has played in their development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham, T.H.: (physio)logical circuits: The intellectual origins of the mcculloch–pitts neural networks. Journal of the History of the Behavioral Sciences 38(1), 3–25 (2002)
Angus, D.: Ant colony optimisation: From biological inspiration to an algorithmic framework. Tech. rep., Swinburne University of Technology (2006)
Arbib, M.: Artificial intelligence and brain theory: Unities and diversities. Annals of Biomedical Engineering 3(3), 238–274 (1975)
Atmar, W.: Notes on the simulation of evolution. Neural Networks, IEEE Transactions on 5(1), 130–147 (1994)
Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Animal behaviour 76, 201–215 (2008)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports-Review Section of Physics Letters 424(4-5), 175–308 (2006)
Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelligence 119(1-2), 275–286 (2000)
Bohm, D., Peat, D.: Science, Order, and Creativity. Routledge (2000)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)
Box, G.E.P.: Evolutionary operation: A method for increasing industrial productivity. Applied Statistics 6(2), 81–101 (1957)
Bremermann, H.J., Rogson, M., Salaff, S.: Global properties of evolution processes. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 314–352. Wiley/ IEEE Press (1998)
de Castro, L.N.: Fundamentals of natural computing: an overview. Physics of Life Reviews 4(1), 1–36 (2007)
Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)
Cordón, O., Herrera, F., Stützle, T.: A review of the ant colony optimization metaheuristic: Basis, models and new trends. Mathware & Soft Computing 9, 141–175 (2002)
Crosby, J.L.: Computers in the study of evolution. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 230–254. Wiley/ IEEE Press (1998)
Darwin, C.: The Origin of Species. Avenel Books (1979)
Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior 3(2), 159–168 (1990)
Dobzhansky, T.: Biology, molecular and organismic. American Zoologist 4, 443–452 (1964)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 26(1), 29–41 (1996)
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., May, A.: Neuroplasticity: Changes in grey matter induced by training - newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature 427(6972), 311–312 (2004)
El-Hani, C.N., Emmeche, C.: On some theoretical grounds for an organism-centered biology: Property emergence, supervenience, and downward causation. Theory in Biosciences 119(3-4), 234–275 (2000)
Flake, G.W.: The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, Cambridge (2000)
Fogel, D.B.: Evolutionary programming–an introduction and some curent directions. Statistics and Computing 4(2), 113–129 (1994)
Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks 5(1), 3–14 (1994)
Fogel, D.B. (ed.): Evolutionary Computation: The Fossil Record. Wiley-IEEE Press (1998)
Fogel, D.B.: What is evolutionary computation? Spectrum, IEEE 37(2), 26, 28–32 (2000)
Fogel, D.B.: In memoriam Alex S. Fraser [1923-2002]. IEEE Transactions on Evolutionary Computation 6(5), 429–430 (2002)
Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through a simulation of evolution. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 230–254. Wiley/ IEEE Press (1998)
Fraser, A.S.: Monte carlo analyses of genetic models. Nature 181, 208–209 (1958)
Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of chaos, Washington, D.C, AAAS (1990)
Holland, J.H.: Adaptation in natural and artificial systems, 3rd edn. MIT Press, Cambridge (1992)
Holland, J.H.: Genetic algorithms. Scientific American 267, 66–72 (1992)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)
Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52(3), 141–152 (1985)
Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Koch, C., Laurent, G.: Complexity and the nervous system. Science 284(5411), 96–98 (1999)
Lotka, A.J.: Contribution to the energetics of evolution. Proceedings of the National Academy of Sciences of the United States of America 8(6), 147–151 (1922)
McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology 5(4), 115–133 (1943)
Perkins, D.: Archimedes’ Bathtub. W.W. Norton & Company (2000)
Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317(6035), 314–319 (1985)
Rechenberg, I.: Cybernetic solution path of an experimental problem. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record. Wiley/ IEEE Press (1998)
Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph 21(4), 25–34 (1987)
Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annual review of neuroscience 27, 169–192 (2004)
Rogers, D.: Weather prediction using a genetic memory. Tech. rep., Research Institute for Advance Computer Science, NASA Ames Research Center (1990)
Schwefel, H.P.: Deep insight from simple models of evolution. Biosystems 64(1-3), 189–198 (2002)
Simonton, D.K.: Creativity in Science. Cambridge University Press, Cambridge (2004)
Smith, J.E.: Coevolving memetic algorithms: A review and progress report. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 37(1), 6–17 (2007)
Smith, K.A.: Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. on Computing 11(1), 15–34 (1999)
Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolutionary Computation 10(1), 1–34 (2002)
Whitacre, J.M., Sarker, R.A., Pham, Q.T.: The self-organization of interaction networks for nature-inspired optimization. IEEE Transactions on Evolutionary Computation 12(2), 220–230 (2008)
Wilson, E.O.: The Diversity of Life. Belknap Press of Harvard University Press, Cambridge (1992)
Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
Wright, S.: Evolution in mendelian populations. Bulletin of Mathematical Biology 52(1), 241–295 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Steer, K.C.B., Wirth, A., Halgamuge, S.K. (2009). The Rationale Behind Seeking Inspiration from Nature. In: Chiong, R. (eds) Nature-Inspired Algorithms for Optimisation. Studies in Computational Intelligence, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00267-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-00267-0_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00266-3
Online ISBN: 978-3-642-00267-0
eBook Packages: EngineeringEngineering (R0)