Skip to main content

Harmony Search as a Metaheuristic Algorithm

  • Chapter
Music-Inspired Harmony Search Algorithm

Part of the book series: Studies in Computational Intelligence ((SCI,volume 191))

Abstract

This first chapter intends to review and analyze the powerful new Harmony Search (HS) algorithm in the context of metaheuristic algorithms. We will first outline the fundamental steps of HS, and show how it works. We then try to identify the characteristics of metaheuristics and analyze why HS is a good metaheuristic algorithm. We then review briefly other popular metaheuristics such as particle swarm optimization so as to find their similarities and differences with HS. Finally, we will discuss the ways to improve and develop new variants of HS, and make suggestions for further research including open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  2. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Engrg. 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  3. Harmony Search Algorithm (2007) (accessed December 7, 2008), http://www.hydroteq.com

  4. Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver Press (2008)

    Google Scholar 

  5. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  6. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 35, 268–308 (2003)

    Article  Google Scholar 

  7. De Jong, K.: Evolutionary computation: a unified approach. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  8. Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  9. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  11. Dorigo, M., Stutzle, T.: Ant colony optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  13. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344, 243–278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Int. Conf. Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  15. Yang, X.S.: Biology-derived algorithms in engineering optimization. In: Olarius, S., Zomaya, A. (eds.) Handbook of Bioinspired Algorithms and Applications. Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  16. Yang, X.S.: Mathematical optimization: from linear programming to metaheuristics. Cambridge Int. Science Publishing, UK (2008)

    MATH  Google Scholar 

  17. Engelbrecht, A.P.: Fundamentals of computational swarm intelligence. Wiley, Chichester (2005)

    Google Scholar 

  18. Perelman, L., Ostfeld, A.: An adaptive heuristic cross-entropy algorithm for optimal design of water distribution systems. Engineering Optimization 39, 413–428 (2007)

    Article  Google Scholar 

  19. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687–697 (2008)

    Article  Google Scholar 

  20. Yang, X.S.: New enzyme algorithm, Tikhonov regularization and inverse parabolic analysis. In: Simos, T., Maroulis, G. (eds.) Advances in Computational Methods in Science and Engineering – ICCMSE 2005, vol. 4, pp. 1880–1883 (2005)

    Google Scholar 

  21. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  22. Omran, M., Mahdavi: Global-best harmony search. Applied Math. Computation 198, 643–656 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, XS. (2009). Harmony Search as a Metaheuristic Algorithm. In: Geem, Z.W. (eds) Music-Inspired Harmony Search Algorithm. Studies in Computational Intelligence, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00185-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00185-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00184-0

  • Online ISBN: 978-3-642-00185-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics