Abstract
This first chapter intends to review and analyze the powerful new Harmony Search (HS) algorithm in the context of metaheuristic algorithms. We will first outline the fundamental steps of HS, and show how it works. We then try to identify the characteristics of metaheuristics and analyze why HS is a good metaheuristic algorithm. We then review briefly other popular metaheuristics such as particle swarm optimization so as to find their similarities and differences with HS. Finally, we will discuss the ways to improve and develop new variants of HS, and make suggestions for further research including open questions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony search. Simulation 76, 60–68 (2001)
Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Engrg. 194, 3902–3933 (2005)
Harmony Search Algorithm (2007) (accessed December 7, 2008), http://www.hydroteq.com
Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver Press (2008)
Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Dordrecht (1997)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 35, 268–308 (2003)
De Jong, K.: Evolutionary computation: a unified approach. MIT Press, Cambridge (2006)
Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)
Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison Wesley, Reading (1989)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Dorigo, M., Stutzle, T.: Ant colony optimization. MIT Press, Cambridge (2004)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford (1999)
Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344, 243–278 (2005)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE Int. Conf. Neural Networks, pp. 1942–1948 (1995)
Yang, X.S.: Biology-derived algorithms in engineering optimization. In: Olarius, S., Zomaya, A. (eds.) Handbook of Bioinspired Algorithms and Applications. Chapman & Hall/CRC, Boca Raton (2005)
Yang, X.S.: Mathematical optimization: from linear programming to metaheuristics. Cambridge Int. Science Publishing, UK (2008)
Engelbrecht, A.P.: Fundamentals of computational swarm intelligence. Wiley, Chichester (2005)
Perelman, L., Ostfeld, A.: An adaptive heuristic cross-entropy algorithm for optimal design of water distribution systems. Engineering Optimization 39, 413–428 (2007)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687–697 (2008)
Yang, X.S.: New enzyme algorithm, Tikhonov regularization and inverse parabolic analysis. In: Simos, T., Maroulis, G. (eds.) Advances in Computational Methods in Science and Engineering – ICCMSE 2005, vol. 4, pp. 1880–1883 (2005)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation 1, 67–82 (1997)
Omran, M., Mahdavi: Global-best harmony search. Applied Math. Computation 198, 643–656 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Yang, XS. (2009). Harmony Search as a Metaheuristic Algorithm. In: Geem, Z.W. (eds) Music-Inspired Harmony Search Algorithm. Studies in Computational Intelligence, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00185-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-00185-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00184-0
Online ISBN: 978-3-642-00185-7
eBook Packages: EngineeringEngineering (R0)