Centromere pp 153-179 | Cite as

Structure and Evolution of Plant Centromeres

  • Kiyotaka Nagaki
  • Jason Walling
  • Cory Hirsch
  • Jiming JiangEmail author
  • Minoru MurataEmail author
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 48)


Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.


Dicentric Chromosome Human Artificial Chromosome Centromeric Chromatin Active Centromere Holocentric Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B chromosome centric sequence. Genetics 135:589–597PubMedGoogle Scholar
  2. Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, Radlwimmer B, Ladurner AG, Warburton PE (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148PubMedGoogle Scholar
  3. Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14:359–368PubMedGoogle Scholar
  4. Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize. (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078PubMedGoogle Scholar
  5. Ananiev EV, Svitashev S, Wu C, Chamberlin MA, Gordon-Kamm W, Schwartz C, Sturdevant M, Tingey S (2008) Artificial chromosome construction in Zea mays L. In: XX Internat. Congress Genetics, July 11–17, 2008, Berlin, Germany, p. 346Google Scholar
  6. Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268PubMedGoogle Scholar
  7. Auriche C, Donini P, Ascenzioni F (2001) Molecular and cytological analysis of a 5.5 Mb minichromosome. EMBO Rep 2:102–107PubMedGoogle Scholar
  8. Barry A, Bateman M, Howman E, Cancilla M, Tainton K, Irvine D, Saffery R, Choo K (2000) The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: further evidence for epigenetic modification. Genome Res 10:832–838PubMedGoogle Scholar
  9. Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100PubMedGoogle Scholar
  10. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330PubMedGoogle Scholar
  11. Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S (1999) A histone-H3-like protein in C. elegans. Nature 401:547–548PubMedGoogle Scholar
  12. Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37:809–819PubMedGoogle Scholar
  13. Cardone MF, Alonso A, Pazienza M, Ventura M, Montemurro G, Carbone L, de Jong PJ, Stanyon R, D’Addabbo P, Archidiacono N, She X, Eichler EE, Warburton PE, Rocchi M (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7:R91PubMedGoogle Scholar
  14. Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet 3:1965–1974PubMedGoogle Scholar
  15. Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Lankhorst RK, Jacobsen E, de Jong H (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16(7):919–933PubMedGoogle Scholar
  16. Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704PubMedGoogle Scholar
  17. Cheng Z-J, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672PubMedGoogle Scholar
  18. Choo KH (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177PubMedGoogle Scholar
  19. Choo KHA (1997) The centromere. Oxford University Press, OxfordGoogle Scholar
  20. Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1717–1718Google Scholar
  21. Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474PubMedGoogle Scholar
  22. Cottarel G, Shero JH, Hieter P, Hegemann JH (1989) A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol 9:3342–3349PubMedGoogle Scholar
  23. Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trend in Biochem Sci 31:662–669Google Scholar
  24. Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227–1238PubMedGoogle Scholar
  25. Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153:F33–F38PubMedGoogle Scholar
  26. Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice. (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135–8140PubMedGoogle Scholar
  27. Du Y, Dawe RK (2007) Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res 15:767PubMedGoogle Scholar
  28. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321PubMedGoogle Scholar
  29. Entani T, Iwano M, Shiba H, Takayama S, Fukui K, Isogai A (1999) Centromeric localization of an S-RNase gene in Petunia hybrida Vilm. Theor Appl Genet 99:391–397Google Scholar
  30. Francki MG (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye. (Secale cereale L.). Genome 44:266–274PubMedGoogle Scholar
  31. Fukagawa T, Brown WRA (1997) Efficient conditional mutation of the vertebrate CENP-C gene. Hum Mol Genet 6:2301–2308PubMedGoogle Scholar
  32. Fukui KN, Suzuki G, Lagudah ES, Rahman S, Appels R, Yamamoto M, Mukai Y (2001) Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat. Plant Cell Physiol 42:189–196PubMedGoogle Scholar
  33. Furuyama S, Biggins S (2007) Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104:14706–14711PubMedGoogle Scholar
  34. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedGoogle Scholar
  35. Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96:14400–14405PubMedGoogle Scholar
  36. Gernand D, Demidov D, Houben A (2003) The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet Genome Res 101:172–176Google Scholar
  37. Gindullis F, Dechyeva D, Schmidt T (2001a) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet. (Beta vulgaris) genome analysis. Genome 44:846–855Google Scholar
  38. Gindullis F, Desel C, Galasso I, Schmidt T (2001b) The large-scale organization of the centromeric region in Beta species. Genome Res 11:253–265Google Scholar
  39. Goel S, Raina SN, Ogihara Y (2002) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of nuclear ribosomal DNA in the Phaseolus-Vigna complex. Mol Phylogenet Evol 22:1–19PubMedGoogle Scholar
  40. Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13:1664–1677PubMedGoogle Scholar
  41. Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160:25–39PubMedGoogle Scholar
  42. Hahnenberger KM, Baum MP, Polizzi CM, Carbon J, Clarke L (1989) Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 86:577–581PubMedGoogle Scholar
  43. Haizel T, Lim YK, Leitch AR, Moore G (2005) Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res 109:134–143PubMedGoogle Scholar
  44. Han F, Lamb JC, Bircheler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243PubMedGoogle Scholar
  45. Harrington JJ, Bokkelen GV, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355PubMedGoogle Scholar
  46. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165Google Scholar
  47. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  48. Heller K, Kilian A, Piatyszek MA, Kleinhofs A (1996) Telomerase activity in plant extracts. Mol Gen Genet 252:342–345PubMedGoogle Scholar
  49. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360PubMedGoogle Scholar
  50. Henikoff S, Ahmad K, Platero JS, van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 97:716–721PubMedGoogle Scholar
  51. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102PubMedGoogle Scholar
  52. Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11:241–253PubMedGoogle Scholar
  53. Hizume M, Shibata F, Maruyama Y, Kondo T (2001) Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc. Chromosoma 110:345–351PubMedGoogle Scholar
  54. Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121PubMedGoogle Scholar
  55. Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560PubMedGoogle Scholar
  56. Houben A, Guttenbach M, Kress W, Pich U, Schubert I, Schmid M (1995) Immunostaining and interphase arrangement of field bean kinetochores. Chromosome Res 3:27–31PubMedGoogle Scholar
  57. Houben A, Leach CR, Verlin D, Rofe R, Timmis JN (1997) A repetitive DNA sequence common to the different B chromosomes of the genus Brachycome. Chromosoma 106:513–519PubMedGoogle Scholar
  58. Houben A, Wako T, Furushima-Shimogawara R, Presting G, Kunzel G, Schubert I, Fukui K (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 18:675–679PubMedGoogle Scholar
  59. Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283PubMedGoogle Scholar
  60. Houben A, Dawe RK, Jiang J, Schubert I (2008) Engineered plant minichromosomes: A bottom-up success. Plant Cell 20:8–10PubMedGoogle Scholar
  61. Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035PubMedGoogle Scholar
  62. Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439PubMedGoogle Scholar
  63. Itzhaki JE, Barnett MA, MacCarthy AB, Buckle VJ, Brown WR, Porter AC (1992) Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nat Genet 2:238–287Google Scholar
  64. Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213PubMedGoogle Scholar
  65. Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571-581PubMedGoogle Scholar
  66. Kalitsis P, Fowler KJ, Earle E, Hill J, Choo KH (1998) Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc Natl Acad Sci USA 95:1136–1141PubMedGoogle Scholar
  67. Kamm A, Schmidt T, Heslop-Harrison JS (1994) Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum. Mol Gen Genet 244:420–425PubMedGoogle Scholar
  68. Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arensa and relationship between Arabidopsis species. Plant Mol Biol 27:853–862PubMedGoogle Scholar
  69. Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113:3217–3226PubMedGoogle Scholar
  70. Kato A, Zheng YZ, Auger DL, Phelps-Durr T, Bauer MJ, Lamb JC, Birchler JA (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 109:156–165PubMedGoogle Scholar
  71. Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Gen Genomics 272:593–602Google Scholar
  72. Kawabe A, Nasuda S, Charlesworth D (2006) Duplication of centromeric histone H3. (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 174:2021–2032PubMedGoogle Scholar
  73. Kikuchi S, Kishii M, Shimizu M, Tsujimoto H (2005) Centromere-specific repetitive sequences from Torenia, a model plant for interspecific fertilization, and whole-mount FISH of its interspecific hybrid embryos. Cytogenet Genome Res 109:228–235PubMedGoogle Scholar
  74. Kishii M, Nagaki K, Tsujimoto H (2001) A tandem repetitive sequence located in the centromeric region of common wheat. (Triticum aestivum) chromosomes. Chromosome Res 9:417–428PubMedGoogle Scholar
  75. Kondo K, Lavarack PS (1984) A cytotaxonomic study of some Australian species of Drosera L. (Droseraceae). Botanical J Linnean Soc 88:317–333Google Scholar
  76. Koornneef M, Van der Veen JH (1983) The trisomics of Arabidopsis thaliana. (L.) Heynh. and the location of linkage groups. Genetica 61:41–46Google Scholar
  77. Koshland D, Rutledge L, Fitzgerald-Hayes M, Hartwell LH (1987) A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48:801–812Google Scholar
  78. Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321PubMedGoogle Scholar
  79. Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290PubMedGoogle Scholar
  80. Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN (1995) Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica. Chromosoma 103:708–714PubMedGoogle Scholar
  81. Lee H, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798PubMedGoogle Scholar
  82. Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276PubMedGoogle Scholar
  83. Liu Z, Yue W, Li D, Wang RR, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456PubMedGoogle Scholar
  84. Lo AW, Craig JM, Saffery R, Kalitsis P, Irvine DV, Earle E, Magliano DJ, Choo KH (2001a) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–2096Google Scholar
  85. Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH (2001b) A novel chromatin immunoprecipitation and array. (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457Google Scholar
  86. Lukaszewski AJ (1995) Chromatid and chromosome type breakage-fusion-bridge cycles in wheat. (Triticum aestiuum L.). Genetics 140:1069–1085PubMedGoogle Scholar
  87. Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA 103:383–388PubMedGoogle Scholar
  88. Ma J, Jackson SA (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16:251–259PubMedGoogle Scholar
  89. Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Evolutionary history and positional shift of a rice centromere. Genetics 177:1217–1220PubMedGoogle Scholar
  90. Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298PubMedGoogle Scholar
  91. Maluszynsak J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1:159–166Google Scholar
  92. Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282PubMedGoogle Scholar
  93. Martinez-Zapater J, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423Google Scholar
  94. McClintock B (1939) The behavior in successive muclear divisions of a chromosome broken at meiosis. Genetics 25:405–416Google Scholar
  95. Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613PubMedGoogle Scholar
  96. Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839Google Scholar
  97. Miniou P, Jeanpierre M, Bourc’his D, Coutinho Barbosa AC, Blanquet V, Viegas-Peuignot E (1997) Alpha-satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Hum Genet 99:738–745PubMedGoogle Scholar
  98. Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR (1990) Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc Natl Acad Sci USA 87:3599–3603PubMedGoogle Scholar
  99. Moore LL, Roth MB (2001) HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J Cell Biol 153:1199–1208PubMedGoogle Scholar
  100. Murata M, Nakata N, Yasumuro Y (1992) Origin and molecular structure of a midget chromosome in a common wheat carrying rye cytoplasm. Chromosoma 102:27–31Google Scholar
  101. Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69:361–370PubMedGoogle Scholar
  102. Murata M, Shibata F, Yokota E (2006) The origin, meiotic behavior, and transmission of a novel minichromosome in Arabidopsis thaliana. Chromosoma 115:311–319PubMedGoogle Scholar
  103. Murata M, Yokota E, Shibata F, Kashihara K (2008) Functional analysis of the Arabidopsis centromere by T-DNA insertion-induced centromere breakage. Proc Natl Acad Sci USA 105:7511–7516PubMedGoogle Scholar
  104. Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193PubMedGoogle Scholar
  105. Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Research 13:195–203PubMedGoogle Scholar
  106. Nagaki K, Tsujimoto H, Sasakuma T (1998) A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosome Res 6:295–302PubMedGoogle Scholar
  107. Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225PubMedGoogle Scholar
  108. Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145PubMedGoogle Scholar
  109. Nagaki K, Kashihara K, Murata M (2005a) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:886–1893Google Scholar
  110. Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005b) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855Google Scholar
  111. Nasuda S, Hudakova S, Schubert I, Houben A, Endo T (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847PubMedGoogle Scholar
  112. Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761PubMedGoogle Scholar
  113. Nonomura KI, Kurata N (1999) Organization of the 1.9-kb repeat unit RCE1 in the centromeric region of rice chromosomes. Mol Gen Genet 261:1–10PubMedGoogle Scholar
  114. Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1. (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9:105–120PubMedGoogle Scholar
  115. Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153:1209–1226PubMedGoogle Scholar
  116. Ogura Y, Shibata F, Sato H, Murata M (2004) Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet Syst 79:139–144PubMedGoogle Scholar
  117. Okada M, Cheeseman I, Hori T, Okawa K, McLeod I, Yates Jr, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457PubMedGoogle Scholar
  118. Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121PubMedGoogle Scholar
  119. Page BT, Wanous MK, Birchler JA (2001) Characterization of a maize chromosome 4 centromeric sequence. Evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159:291–302PubMedGoogle Scholar
  120. Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein. (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815PubMedGoogle Scholar
  121. Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88:3734–3738PubMedGoogle Scholar
  122. Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494PubMedGoogle Scholar
  123. Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29:441–452PubMedGoogle Scholar
  124. Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310–315PubMedGoogle Scholar
  125. Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728PubMedGoogle Scholar
  126. Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET. (QRT) genes. Science 264:1458–1460PubMedGoogle Scholar
  127. Saffery R, Wong LH, Irvine DV, Bateman MA, Griffiths B, Cutts SM, Cancilla MR, Cendron AC, Stafford AJ, Choo KH (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc Natl Acad Sci USA 98:5705–5710PubMedGoogle Scholar
  128. Saitoh H, Tomkiel J, Cooke CA, Ratrie Hr, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125PubMedGoogle Scholar
  129. Sato H, Shibata F, Murata M (2005) Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Res 13:827–834PubMedGoogle Scholar
  130. Saunders VA, Houben A (2001) The pericentromeric heterochromatin of the grass Zingeria biebersteiniana. (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome 44:955–961PubMedGoogle Scholar
  131. Schmidt T, Heslop-Harrison JS (1996) High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from wild beet species Beta procumbens. Plant Mol Biol 30:1099–1114PubMedGoogle Scholar
  132. Schmidt T, Metzlaff M (1991) Cloning and characterization of a Beta vulgaris satellite DNA family. Gene 101: 247–250PubMedGoogle Scholar
  133. Schubert I (2001) Alteration of chromosome numbers by generation of minichromosomes – is there a lower limit of chromosome size for stable segregation. Cytogenet Cell Genet 93:175–181PubMedGoogle Scholar
  134. Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115PubMedGoogle Scholar
  135. Sears ER, Camara A (1952) A transmissible dicentric chromosome. Genetics 37:125–135PubMedGoogle Scholar
  136. Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970PubMedGoogle Scholar
  137. Starr DA, Williams BC, Li Z, Etemad-Moghadam B, Dawe RK, Goldberg ML (1997) Conservation of the centromere/kinetochore protein ZW10. J Cell Biol 138:1289–1301PubMedGoogle Scholar
  138. Sullivan B, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4:2189–2197PubMedGoogle Scholar
  139. Sullivan BA (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228PubMedGoogle Scholar
  140. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083PubMedGoogle Scholar
  141. Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194PubMedGoogle Scholar
  142. Suzuki T, Ide N, Tanaka I (1997) Immunocytochemical visualization of the centromeres during male and female meiosis in Lilium longiflorum. Chromosoma 106:435–445PubMedGoogle Scholar
  143. Takahashi K, Yamada H, Yanagida M (1994) Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 5:1145–1158PubMedGoogle Scholar
  144. Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. J Biol 3:18PubMedGoogle Scholar
  145. Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066PubMedGoogle Scholar
  146. Tek AL, Jiang J (2004) The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma 113:77–83PubMedGoogle Scholar
  147. ten Hoopen R, Manteuffel R, Dolezel J, Malysheva L, Schubert I (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109:482–489PubMedGoogle Scholar
  148. ten Hoopen R, Schleker T, Manteuffel R, Schubert I (2002) Transient CENP-E-like kinetochore proteins in plants. Chromosome Res 10:561–570PubMedGoogle Scholar
  149. The Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  150. Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291PubMedGoogle Scholar
  151. Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561PubMedGoogle Scholar
  152. Viinikka Y (1985) Identification of the chromosome showing neocentric activity in rye. Theor Appl Genet 70:66–71Google Scholar
  153. Voullaire LE, Slater HR, Petrovic V, Choo KHA (1993) A functional marker centromere with no detectable alpha-satellite, satellite-III, or CENP-B protein-activation of a latent centromere. American J Human Genet 52:1153–1163Google Scholar
  154. Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86:9394–9398PubMedGoogle Scholar
  155. Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M, Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R, Kobayashi H, Ito K, Karasawa W, Yamamoto M, Saji S, Katagiri S, Kanamori H, Namiki N, Katayose Y, Matsumoto T, Sasaki T (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976PubMedGoogle Scholar
  156. Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133PubMedGoogle Scholar
  157. Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238PubMedGoogle Scholar
  158. Yang CH, Tomkiel J, Saitoh H, Johnson DH, Earnshaw WC (1996) Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol Cell Biol 16:3576–3586PubMedGoogle Scholar
  159. Yu HG, Hiatt EN, Chan A, Sweeney M, Dawe RK (1997) Neocentromere-mediated chromosome movement in maize. J Cell Biol 139:831–840PubMedGoogle Scholar
  160. Yu HG, Muszynski MG, Dawe RK (1999) The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol 145:425–435PubMedGoogle Scholar
  161. Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929PubMedGoogle Scholar
  162. Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155:1147–1157PubMedGoogle Scholar
  163. Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34PubMedGoogle Scholar
  164. Zhang X, Li X, Marshall JB, Zhong CX, Dawe RK (2005) Phosphoserines on maize centromeric histone H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. Plant Cell 17:572–583PubMedGoogle Scholar
  165. Zhang Y, Huang Y, Zhang L, Li Y, Lu T, Lu Y, Feng Q, Zhao Q, Cheng Z, Xue Y, Wing RA, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucl Acids Res 32:2023–2030PubMedGoogle Scholar
  166. Zheng YZ, Roseman RR, Carlson WR (1999) Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics 153:1435–1444PubMedGoogle Scholar
  167. Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Research Institute for BioresourcesOkayama UniversityKurashikiJapan
  2. 2.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations