Skip to main content

Gemcitabine Changes the Gene Expression in Human Pancreatic Cancer Cells: Search for New Therapeutic Molecular Targets

  • Chapter
  • First Online:
Pancreatology
  • 637 Accesses

Abstract

Gemcitabine (GEM) is currently used as a standard anticancer drug with the best evidence for pancreatic cancer. Recently we discovered that glycogen synthase kinase-3b (GSK-3b) promotes survival and proliferation of cancer cells and that combination of GEM and GSK-3b inhibitor (GSKI) is a putative therapeutic strategy for pancreatic cancer. In this study, we investigated the antitumor effect and molecular mechanisms of treatment by a GSKI combined with GEM. GEM (10-100 mg/L) and GSKI (AR-A014418; 5 mg/L, 16 µM) were added to the culture medium of the human pancreatic cancer cell line PANC-1 in vitro. Gene expression changes were analyzed with complementary DNA microarray and pathway analyses. Combination of GEM and GSKI synergistically suppressed the growth of PANC-1 cells dose-dependently in vitro. Complementary DNA microarray analysis demonstrated that expression of 372 genes was altered in GEM-treated PANC-1 cells. Ingenuity pathways analysis (IPA) revealed marked changes in the genes responsible for gene expression, cell death, DNA replication, and the cell cycle. In particular, IPA for GSKI-treated PANC-1 cells identified changes in expression of genes involved in both p53- and myc-related molecular networks. These data indicate that GSK-3b is a new therapeutic target in pancreatic cancer and that GSK-3b inhibition sensitizes pancreatic cancer cells to GEM by modulating p53 and myc pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burris HA, III, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15(6):2403–13.

    PubMed  CAS  Google Scholar 

  2. Lawrence TS, Davis MA, Hough A, et al. The role of apoptosis in 2′,2′-difluoro-2′-deoxycytidine (gemcitabine)-mediated radiosensitization. Clin Cancer Res 2001;7(2):314–9.

    PubMed  CAS  Google Scholar 

  3. Morin MJ. From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene 2000;19(56):6574–83.

    Article  PubMed  CAS  Google Scholar 

  4. Fuchs SY, Ougolkov AV, Spiegelman VS, et al. Oncogenic β-catenin signaling networks in colorectal cancer. Cell Cycle 2005;4(11):1522–39.

    Article  PubMed  CAS  Google Scholar 

  5. Shakoori A, Ougolkov A, Yu ZW, et al. Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun 2005; 334(4):1365–73.

    Article  PubMed  CAS  Google Scholar 

  6. Jiang PH, Motoo Y, Sawabu N, et al. Effect of gemcitabine on the expression of apoptosis-­related genes in human pancreatic cancer cells. World J Gastroenterol 2006;12(10):1597–602.

    PubMed  CAS  Google Scholar 

  7. Giroux V, Malicet C, Barthet M, et al. p8 is a new target of gemcitabine in pancreatic cancer cells. Clin Cancer Res 2006;12(1):235–41.

    Article  PubMed  CAS  Google Scholar 

  8. Harwood AJ. Regulation of GSK-3: a cellular multiprocessor. Cell 2001;105(7):821–4.

    Article  PubMed  CAS  Google Scholar 

  9. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003;116(Pt 7):1175–86.

    Article  PubMed  CAS  Google Scholar 

  10. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 2002;84:203–29.

    Article  PubMed  CAS  Google Scholar 

  11. Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 2000;406(6791):86–90.

    Article  PubMed  CAS  Google Scholar 

  12. Rottmann S, Wang Y, Nasoff M, et al. A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3β/FBW7 loss of function. Proc Natl Acad Sci U S A 2005;102(42):15195–200.

    Article  PubMed  CAS  Google Scholar 

  13. Cao Q, Lu X, Feng YJ. Glycogen synthase kinase-3β positively regulates the proliferation of human ovarian cancer cells. Cell Res 2006;16(7):671–7.

    Article  PubMed  CAS  Google Scholar 

  14. Tomasini R, Samir AA, Carrier A, et al. TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem. 2003;278(39):37722–9.

    Article  PubMed  CAS  Google Scholar 

  15. Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 2007;104(41):16170–5.

    Article  PubMed  CAS  Google Scholar 

  16. Bardeesy N, Aguirre AJ, Chu GC, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A 2006;103(15):5947–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Y. Ishigaki, K. Kawakami, T. Tanaka, and N. Tomosugi for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Motoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Motoo, Y., Shimasaki, T., Minamoto, T. (2009). Gemcitabine Changes the Gene Expression in Human Pancreatic Cancer Cells: Search for New Therapeutic Molecular Targets. In: Iovanna, J., Ismailov, U. (eds) Pancreatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00152-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00152-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00151-2

  • Online ISBN: 978-3-642-00152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics