Advertisement

MicroRNAs

  • Onpan Cheung
  • Arun J. SanyalEmail author
Chapter

Abstract

MicroRNAs (miRNA) are small, naturally occurring single-stranded RNA of about 21–23 nucleotide in length. They are generated from endogenous transcripts that are encoded in the genomes of humans, animals, viruses, and plants. The first short noncoding miRNA, lin-4 that regulates gene expression in nematode C. elegans was identified by Victor Ambros et al. in 1993 [1]. The miRNA world did not take off until the discovery of let-7, a second miRNA discovered by Ruvkun and Horvitz in 2000 [2], and the rise in interest in another class of short RNA, silencing RNA (siRNA) [3, 4]. The highly conserved nature of let-7 also attracted a great deal of attention to miRNA research. Since its discovery, more miRNAs in various organisms, from protozoans to humans have been identified. Currently, a total of 873 miRNAs have been reported in human (miRBase 11.0, April 2008), and many of them are encoded in polycistronic transcripts. The expression of miRNA, in general, is both organ-specific and dependent on the stage of development [5, 6]. miRNAs have diverse functions including regulation of important cellular processes e.g., cancer, cell metabolism, immune function, cell proliferation, apoptosis, tissue development, and differentiation [7–11].

Keywords

Renilla Luciferase miRNA Gene Nonalcoholic Fatty Liver Disease Fragile Site miRNA Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  2. 2.
    Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefPubMedGoogle Scholar
  3. 3.
    Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952CrossRefPubMedGoogle Scholar
  4. 4.
    Sharp PA, Zamore PD (2000) Molecular biology. RNA interference. Science 287:2431–2433CrossRefPubMedGoogle Scholar
  5. 5.
    Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739CrossRefPubMedGoogle Scholar
  6. 6.
    Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358CrossRefPubMedGoogle Scholar
  7. 7.
    Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98CrossRefPubMedGoogle Scholar
  8. 8.
    Esau C, Kang X, Peralta E et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361 –52365CrossRefPubMedGoogle Scholar
  9. 9.
    Meng F, Henson R, Wehbe-Janek H et al (2007) The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 282:8256–8264CrossRefPubMedGoogle Scholar
  10. 10.
    Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126:767–774CrossRefPubMedGoogle Scholar
  11. 11.
    Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132: 4653–4662CrossRefPubMedGoogle Scholar
  12. 12.
    Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385CrossRefPubMedGoogle Scholar
  13. 13.
    Ketting RF, Fischer SE, Bernstein E et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659CrossRefPubMedGoogle Scholar
  14. 14.
    Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98CrossRefPubMedGoogle Scholar
  15. 15.
    Denli AM, Tops BB, Plasterk RH et al (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235CrossRefPubMedGoogle Scholar
  16. 16.
    Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34CrossRefPubMedGoogle Scholar
  17. 17.
    Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296CrossRefPubMedGoogle Scholar
  18. 18.
    Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197CrossRefPubMedGoogle Scholar
  19. 19.
    Gregory RI, Yan KP, Amuthan G et al (2004) The Micro­processor complex mediates the genesis of microRNAs. Nature 432:235–240CrossRefPubMedGoogle Scholar
  20. 20.
    Rodriguez A, Griffiths-Jones S, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910CrossRefPubMedGoogle Scholar
  21. 21.
    Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247CrossRefPubMedGoogle Scholar
  22. 22.
    Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004CrossRefPubMedGoogle Scholar
  23. 23.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  24. 24.
    Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576CrossRefPubMedGoogle Scholar
  25. 25.
    Mansfield JH, Harfe BD, Nissen R et al (2004) MicroRNA-responsive “sensor” transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36:1079–1083CrossRefPubMedGoogle Scholar
  26. 26.
    Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596CrossRefPubMedGoogle Scholar
  27. 27.
    Guo HS, Xie Q, Fei JF et al (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17:1376–1386CrossRefPubMedGoogle Scholar
  28. 28.
    Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563CrossRefPubMedGoogle Scholar
  29. 29.
    Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634CrossRefPubMedGoogle Scholar
  30. 30.
    Lall S, Grun D, Krek A et al (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16: 460–471CrossRefPubMedGoogle Scholar
  31. 31.
    Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798CrossRefPubMedGoogle Scholar
  32. 32.
    Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85CrossRefGoogle Scholar
  33. 33.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  34. 34.
    Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821CrossRefPubMedGoogle Scholar
  35. 35.
    Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333CrossRefPubMedGoogle Scholar
  36. 36.
    Chung KH, Hart CC, Al-Bassam S et al (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 34:e53CrossRefGoogle Scholar
  37. 37.
    Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438: 685–689CrossRefPubMedGoogle Scholar
  38. 38.
    Cheung O, Puri P, Eicken C et al (2008) Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48:1810–1820CrossRefPubMedGoogle Scholar
  39. 39.
    Meister G, Landthaler M, Dorsett Y et al (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550CrossRefPubMedGoogle Scholar
  40. 40.
    Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908CrossRefPubMedGoogle Scholar
  41. 41.
    Ji R, Cheng Y, Yue J et al (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588CrossRefPubMedGoogle Scholar
  42. 42.
    Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910CrossRefPubMedGoogle Scholar
  43. 43.
    Gottwein E, Cai X, Cullen BR (2006) A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol 80: 5321–5326CrossRefPubMedGoogle Scholar
  44. 44.
    Georgantas RW 3rd, Hildreth R, Morisot S et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104:2750–2755CrossRefPubMedGoogle Scholar
  45. 45.
    Thermann R, Hentze MW (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447:875–878CrossRefPubMedGoogle Scholar
  46. 46.
    Maroney PA, Yu Y, Fisher J et al (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13:1102–1107CrossRefPubMedGoogle Scholar
  47. 47.
    Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114CrossRefPubMedGoogle Scholar
  48. 48.
    Pontes O, Pikaard CS (2008) siRNA and miRNA processing: new functions for Cajal bodies. Curr Opin Genet Dev 18:197–203CrossRefPubMedGoogle Scholar
  49. 49.
    Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150PubMedGoogle Scholar
  50. 50.
    Bhattacharyya SN, Habermacher R, Martine U et al (2006) Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol 71:513–521CrossRefPubMedGoogle Scholar
  51. 51.
    Liu J, Valencia-Sanchez MA, Hannon GJ et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723CrossRefPubMedGoogle Scholar
  52. 52.
    Chang J, Nicolas E, Marks D et al (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113PubMedGoogle Scholar
  53. 53.
    Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:G852–G858CrossRefGoogle Scholar
  54. 54.
    Chang J, Guo JT, Jiang D et al (2008) Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol 82:8215–8223CrossRefPubMedGoogle Scholar
  55. 55.
    Jopling CL, Yi M, Lancaster AM et al (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581CrossRefPubMedGoogle Scholar
  56. 56.
    Jopling CL, Norman KL, Sarnow P (2006) Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol 71:369–376CrossRefPubMedGoogle Scholar
  57. 57.
    Pedersen IM, Cheng G, Wieland S et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922CrossRefPubMedGoogle Scholar
  58. 58.
    Sarasin-Filipowicz M, Krol J, Markiewicz I et al (2009) Decreased levels of miRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nature Med 15:31–33CrossRefPubMedGoogle Scholar
  59. 59.
    Kutay H, Bai S, Datta J et al (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99:671–678CrossRefPubMedGoogle Scholar
  60. 60.
    Varnholt H, Drebber U, Schulze F et al (2008) MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47:1223–1232CrossRefPubMedGoogle Scholar
  61. 61.
    Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Gastroenterology, Hepatology and NutritionVirginia Commonwealth University Medical CenterRichmondUSA

Personalised recommendations