Advertisement

HBV Signaling

  • Massimo LevreroEmail author
  • Laura Belloni
Chapter

Abstract

Infection with hepatitis B virus (HBV) continues to be a major health problem with about 400 million people chronically infected worldwide who are at high risk of developing liver cirrhosis and hepatocellular carcinoma (HCC) [1].

HBV is a member of the Hepadnaviridae family which includes small enveloped DNA viruses infecting primates, rodents, and birds [2,3]. One common characteristic of these viruses is their high species and cell-type specificity, as well as a unique genomic organization and replication mechanism. The genome of all hepadnaviruses is extremely compact consisting of four overlapping open reading frames (ORF). The S, Core and Pol ORFs encode viral proteins that are essential structural components of viral replication and assembly (envelope proteins (SHBs, MHBs and LHBs), core (HBc) and reverse transcriptase (RT)/polymerase (Pol)). The HBeAg, which is generated by the intracellular processing of the preC/Core protein at the endoplasmic reticulum (ER) levels as well as by intracellular and extracellular proteolysis of free HBc proteins, is thought to play an important role in HBV pathogenesis by influencing the host immune system . The X ORF encodes for the regulatory X protein (hepatitis B virus X protein (HBx)) which is an essential factor for viral replication and it is considered to be one of the most important determinants of HBV-induced hepatocarcinogenesis [4]. Whereas many aspects of viral replication have been elucidated, the initial phases of hepadnaviral infection (attachment of mature virions onto host cell membranes and viral entry) are still less understood, and the search for putative cellular receptors and coreceptors is still very active. An additional important feature of hepadnaviruses replication is the relative low fidelity of the ­enzimatic machinery that leads to high genomic heterogeneity and variability [2,3].

Keywords

Basal Core Promoter cccDNA Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev. 2006;28:112–125Google Scholar
  2. 2.
    Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64:51–68PubMedCrossRefGoogle Scholar
  3. 3.
    Seeger C, Mason WS, Zoulim F. Hepadnaviruses. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2977–3029Google Scholar
  4. 4.
    Tang H, Oishi N, Kaneko S, Murakami S. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci. 2006;97:977–983PubMedCrossRefGoogle Scholar
  5. 5.
    Raimondo G, Pollicino T, Cacciola I, Squadrito G. Occult hepatitis B virus infection. J Hepatol. 2007;46:160–170PubMedCrossRefGoogle Scholar
  6. 6.
    Raimondo G, Allain JP, Brunetto MR, Buendia MA, Chen DS, Colombo M, et al Statements from the Taormina expert meeting on occult hepatitis B virus infection. J Hepatol. 2008;49:652–657PubMedCrossRefGoogle Scholar
  7. 7.
    Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986;47:451–460PubMedCrossRefGoogle Scholar
  8. 8.
    Hirsch RC, Lavine JE, Chang LJ, Varmus HE, Ganem D. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature. 1990;344:552–555PubMedCrossRefGoogle Scholar
  9. 9.
    Bartenschlager R, Schaller H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J. 1992;11:3413–3420PubMedGoogle Scholar
  10. 10.
    Gerlich WH, Robinson WS. Hepatitis B virus contains protein attached to the 50 terminus of its complete DNA strand. Cell. 1980;21:801–809.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang GH, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell. 1992;71:663–670PubMedCrossRefGoogle Scholar
  12. 12.
    Weber M, Bronsema V, Bartos H, Bosserhoff A, Bartenschlager R, Schaller H. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J Virol. 1994;68:2994–2999PubMedGoogle Scholar
  13. 13.
    Zoulim F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase.J Virol. 1994;68:6–13PubMedGoogle Scholar
  14. 14.
    Wu TT, Coates L, Aldrich CE, Summers J, Mason WS. In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology. 1990;175:255–261PubMedCrossRefGoogle Scholar
  15. 15.
    Hu J, Toft D, Anselmo D, Wang X. In vitro reconstitution of functional hepadnavirus reverse transcriptase with cellular chaperone proteins. J Virol. 2002;76:269–279PubMedCrossRefGoogle Scholar
  16. 16.
    Hu J, Flores D, Toft D, Wang X, Nguyen D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol. 2004;78:13122–13131PubMedCrossRefGoogle Scholar
  17. 17.
    Schlicht HJ, Bartenschlager R, Schaller H. The duck hepatitis B virus core protein contains a highly phosphorylated C terminus that is essential for replication but not for RNA packaging. J Virol. 1989;63:2995–3000PubMedGoogle Scholar
  18. 18.
    Nassal M. The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol. 1992;66:4107–4116PubMedGoogle Scholar
  19. 19.
    Yu M, Summers J. Multiple functions of capsid protein phosphorylation in duck hepatitis B virus replication.J Virol. 1994;68:4341–4348PubMedGoogle Scholar
  20. 20.
    Perlman DH, Berg EA, O’Connor PB, Costello CE. Hu J Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proc Natl Acad Sci USA. 2005;102:9020–9025PubMedCrossRefGoogle Scholar
  21. 21.
    Pugh J, Zweidler A, Summers J. Characterization of the major duck hepatitis B virus core particle protein. J Virol. 1989;63:1371–1376PubMedGoogle Scholar
  22. 22.
    Melegari M, Wolf SK, Schneider RJ. Hepatitis B virusDNAreplication is coordinated by core protein serine phosphorylation and HBx expression. J Virol. 2005;79:9810–9820PubMedCrossRefGoogle Scholar
  23. 23.
    Yeh CT, Ou JH. Phosphorylation of hepatitis B virus precore and core proteins. J Virol. 1991;65:2327–2331PubMedGoogle Scholar
  24. 24.
    Basagoudanavar SH, Perlman DH, Hu J. Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation. J Virol. 2007;81:1641–1649PubMedCrossRefGoogle Scholar
  25. 25.
    Albin C, Robinson WS. Protein kinase activity in hepatitis B virus. J Virol. 1980;34:297–302PubMedGoogle Scholar
  26. 26.
    Barrasa MI, Guo JT, Saputelli J, Mason WS, Seeger C. Does a cdc2 kinase-like recognition motif on the core protein of hepadnaviruses regulate assembly and disintegration of capsids? J Virol. 2001;75:2024–2028PubMedCrossRefGoogle Scholar
  27. 27.
    Kau JH, Ting LP. Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. J Virol. 1998;72:3796–3803PubMedGoogle Scholar
  28. 28.
    Daub H, Blencke S, Habenberger P, Kurtenbach A, Dennenmoser J, Wissing J, et al Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J Virol. 2002;76:8124–8137PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang YY, Zhang BH, Theele D, Litwin S, Toll E, Summers J. Single-cell analysis of covalently closed circular DNA copy numbers in a hepadnavirus-infected liver. Proc Natl Acad Sci USA. 2003;100:12372–12377PubMedCrossRefGoogle Scholar
  30. 30.
    Locarnini S, Mason WS. Cellular and virological mechanisms of HBV drug resistance. J Hepatol. 2006;44:422–431PubMedCrossRefGoogle Scholar
  31. 31.
    Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, et al The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol. 1995;69: 3350–3357PubMedGoogle Scholar
  32. 32.
    Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, et al Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006;130: 823–837PubMedCrossRefGoogle Scholar
  33. 33.
    Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69:6158–6169PubMedGoogle Scholar
  34. 34.
    Belloni L, Pollicino T, Cimino L, Raffa G, Raimondo G, Levrero M. HBX binds in vivo on the HBV minichromosome, modifies the epigenetic regulation of ccc-DNA function and potentiates HBV replication. J Hepatol. 2008;48 (suppl 2):S25.CrossRefGoogle Scholar
  35. 35.
    Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009;51:581–92.Google Scholar
  36. 36.
    Chen HS, Kaneko S, Girones R, Anderson RW, Hornbuckle WE, Tennant BC, et al The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J Virol. 1993;67:1218–1226PubMedGoogle Scholar
  37. 37.
    Zoulim F, Saputelli J, Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol. 1994;68:2026–2030PubMedGoogle Scholar
  38. 38.
    Keasler VV, Hodgson AJ, Madden CR, Slagle BL. Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo. J Virol. 2007;81:2656–2662PubMedCrossRefGoogle Scholar
  39. 39.
    Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol. 2004;78:12725–12734PubMedCrossRefGoogle Scholar
  40. 40.
    Doria M, Klein N, Lucito R, Schneider RJ. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBO J. 1995;14:4747–4757PubMedGoogle Scholar
  41. 41.
    Werle-Lapostolle B, Bowden S, Locarnini S, Wursthorn K, Petersen J, Lau G, et al Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology. 2004;126:1750–1758PubMedCrossRefGoogle Scholar
  42. 42.
    Cheong JH, Yi M, Lin Y, Murakami S. Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. EMBO J. 1995;14:143–150.PubMedGoogle Scholar
  43. 43.
    Seto E, Mitchell PJ, Yen TS. Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors. Nature. 1990;344:72–74PubMedCrossRefGoogle Scholar
  44. 44.
    Maguire HF, Hoeffler JP, Siddiqui A. HBVXprotein alters theDNAbinding specificity of CREB and ATF-2 byprotein-protein interactions. Science. 1991;252:842–844PubMedCrossRefGoogle Scholar
  45. 45.
    Cougot D, Wu Y, Cairo S, Caramel J, Renard CA, Lévy L, et al The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J Biol Chem. 2007;282: 4277–4287PubMedCrossRefGoogle Scholar
  46. 46.
    Chirillo P, Falco M, Puri PL, Artini M, Balsano C, Levrero M, et al Hepatitis B virus pX activates NF-kappa B-dependent transcription through a Raf-independent pathway. J Virol. 1996;70:641–646PubMedGoogle Scholar
  47. 47.
    Weil R, Sirma H, Giannini C, Kremsdorf D, Bessia C, Dargemont C, et al Direct association and nuclear import of the hepatitis B virus X protein with the NF-kappaB inhibitor IkappaBalpha. Mol Cell Biol. 1999;9:6345–6354Google Scholar
  48. 48.
    Benn J, Su F, Doria M, Schneider RJ. Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol. 1996;70: 4978–4985PubMedGoogle Scholar
  49. 49.
    Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science. 2001;294:2376–2378PubMedCrossRefGoogle Scholar
  50. 50.
    Chami M, Ferrari D, Nicotera P, Paterlini-Brechot P, Rizzuto P. Caspase-dependent alterations of Ca2+ signaling in the induction of apoptosis by hepatitis B virus X protein. J Biol Chem. 2003;278:31745–31755PubMedCrossRefGoogle Scholar
  51. 51.
    Bouchard MJ, Puro RJ, Wang L, Schneider RJ. Activation and inhibition of cellular calcium and tyrosine kinase signaling pathways identify targets of the HBx protein involved in hepatitis B virus replication. J Virol. 2003;77:7713–7719PubMedCrossRefGoogle Scholar
  52. 52.
    Bouchard MJ, Wang L, Schneider LJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: multiple functions in viral replication. J Virol. 2006;80:4406–4414PubMedCrossRefGoogle Scholar
  53. 53.
    Ganem D, Prince AM. Hepatitis B virus infection–natural history and clinical consequences. N Engl J Med. 2004;350:1118–1129PubMedCrossRefGoogle Scholar
  54. 54.
    Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol. 2005;5:215–229PubMedCrossRefGoogle Scholar
  55. 55.
    Bruss V. Revisiting the cytopathic effect of hepatitis B virus infection. Hepatology. 2002;36:1327–1329PubMedGoogle Scholar
  56. 56.
    Foo NC, Ahn BY, Ma X, Hyun W, Yen TS. Cellular vacuolization and apoptosis induced by hepatitis B virus large surface protein. Hepatology. 2002;36:1400–1407PubMedGoogle Scholar
  57. 57.
    Chisari FV, Klopchin K, Moriyama T. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989;59:1145–1156PubMedCrossRefGoogle Scholar
  58. 58.
    Warner N, Locarnini S. The antiviral drug selected hepatitis B virus rtA181T/sW172* mutant has a dominant negative secretion defect and alters the typical profile of viral rebound. Hepatology. 2008;48:88–98PubMedCrossRefGoogle Scholar
  59. 59.
    Lenhoff RJ, Summers J. Construction of avian hepadnavirus variants with enhanced replication and cytopathicity in primary hepatocytes. J Virol. 1994;68:5706–5713PubMedGoogle Scholar
  60. 60.
    Lenhoff RJ, Luscombe CA, Summers J. Acute liver injury following infection with a cytopathic strain of duck hepatitis B virus. Hepatology. 1999;29:563–571PubMedCrossRefGoogle Scholar
  61. 61.
    Baumert TF, Yang C, Schurmann P, Kock J, Ziegler C, Grullich C, et al Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes. Hepatology. 2005;41:247–256PubMedCrossRefGoogle Scholar
  62. 62.
    Su F, Theodosis CN, Schneider RJ. Role of NF-kappaB and myc proteins in apoptosis induced by hepatitis B virus HBx protein. J Virol. 2001;75:215–225PubMedCrossRefGoogle Scholar
  63. 63.
    Kim KH, Seong BL. Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. EMBO J. 2003;22:2104–2116PubMedCrossRefGoogle Scholar
  64. 64.
    Chirillo P, Pagano S, Natoli G, Puri PL, Burgio VL,Balsano C, et al The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc Natl Acad Sci USA. 1997;94:8162–8167PubMedCrossRefGoogle Scholar
  65. 65.
    Sirma H, Giannini C, Poussin K, Paterlini P, Kremsdorf D, Bréchot C. Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx. Oncogene. 1999;18:4848–4859PubMedCrossRefGoogle Scholar
  66. 66.
    Wang XW, Gibson MK, Vermeulen W, Yeh H, Forrester K, Stürzbecher HW, et al Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res. 1995;55: 6012–6016PubMedGoogle Scholar
  67. 67.
    Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–682PubMedCrossRefGoogle Scholar
  68. 68.
    Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 1997;277:815–818PubMedCrossRefGoogle Scholar
  69. 69.
    Liang X, Liu Y, Zhang Q, Gao L, Han L, Ma C, et al Hepatitis B virus sensitizes hepatocyte to TRAIL-induced apoptosis through Bax. J Immunol. 2007;178:503–510PubMedGoogle Scholar
  70. 70.
    Liu YG, Liu SX, Liang XH, Zhang Q, Gao LF, Han LH,et al Blockade of TRAIL pathway ameliorates HBV-induced hepatocyte apoptosis in an acute hepatitis model. Bioche Biophys Res Commun. 2007;352:329–334CrossRefGoogle Scholar
  71. 71.
    Liang X, Du J, Liu Y, Cui M, Ma C, Han L, et al The hepatitis B virus protein MHBs(t) sensitizes hepatoma cells to TRAIL-induced apoptosis through ERK2. Apoptosis. 2007;12:1827–1836PubMedCrossRefGoogle Scholar
  72. 72.
    Du J, Liang X, Liu Y, Qu Z, Gao L, Han L, et al Hepatitis B virus core protein inhibits TRAIL-induced apoptosis of hepatocytes by blocking DR5 expression. Cell Death Differ. 2009;16:219–229PubMedCrossRefGoogle Scholar
  73. 73.
    Kwon JA, Rho HM. Transcriptional repression of the human p53 gene by hepatitis B viral core protein (HBc) in human liver cells. Biol Chem. 2003;384:203–212PubMedCrossRefGoogle Scholar
  74. 74.
    Kim JH, Kang S, Kim J, Ahn BY. Hepatitis B virus core protein stimulates the proteasome mediated degradation of viral x protein. J Virol. 2003;77:7166–7173PubMedCrossRefGoogle Scholar
  75. 75.
    Whitten TM, Quets AT, Schloemer RH. Dentification of the hepatitis B virus factor that inhibits expression of the b interferon gene. J virol. 1991;65:4699–4704PubMedGoogle Scholar
  76. 76.
    Leandro G, Mangia A, Hui J, Fabris P, Rubbia-Brandt L, Colloredo G, et al; HCV Meta-Analysis (on) Individual Patients’ Data Study Group (2006) Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology 130:1636–1642Google Scholar
  77. 77.
    Tsochatzis E, Papatheodoridis GV, Manesis EK, Chrysanthos N, Kafiri G, Archimandritis AJ. Hepatic steatosis in chronic hepatitis B develops due to host metabolic factors: a comparative approach with genotype 1 chronic hepatitis C. Dig Liver Dis. 2007;39:936–942PubMedCrossRefGoogle Scholar
  78. 78.
    Gordon A, McLean CA, Pedersen JS, Bailey MJ, Roberts SK. Hepatic steatosis in chronic hepatitis B and C: predictors, distribution and effect on fibrosis. J Hepatol. 2005;43:38–44PubMedCrossRefGoogle Scholar
  79. 79.
    Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, et al Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A. 2002;26:15669–15674CrossRefGoogle Scholar
  80. 80.
    Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y, Abe T, et al Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci U S A. 2007;104:1661–1666PubMedCrossRefGoogle Scholar
  81. 81.
    Hajjou M, Norel R, Carver R, Marion P, Cullen J, Rogler LE, et al cDNA microarray analysis of HBV transgenic mouse liver identifies genes in lipid biosynthetic and growth control pathways affected by HBV. J Med Virol. 2005;77:57–65PubMedCrossRefGoogle Scholar
  82. 82.
    Kim KH, Shin HJ, Kim K, Choi HM, Rhee SH, Moon HB, et al Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma. Gastroenterology. 2007;132:1955–1967PubMedCrossRefGoogle Scholar
  83. 83.
    Na TY, Shin YK, Roh KJ, Kang SA, Hong I, Oh SJ, et al Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2009;4:1122–1131CrossRefGoogle Scholar
  84. 84.
    Fattovich G, Stroffolini T, Zagni I, et al Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127:S35–S50CrossRefGoogle Scholar
  85. 85.
    El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology. 2004;127:27–35CrossRefGoogle Scholar
  86. 86.
    Taylor-Robinson SD, Foster GR, Arora S, et al Increase in primary liver cancer in the UK, 1979–1994. Lancet. 1997;350:1142–1143PubMedCrossRefGoogle Scholar
  87. 87.
    Moradpour D, Blum HE. Pathogenesis of hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2005;17:477–483PubMedCrossRefGoogle Scholar
  88. 88.
    Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 2006;25:3834–3847PubMedCrossRefGoogle Scholar
  89. 89.
    Ahn SH, Park YN, Park JY, Chang HY, Lee JM, Shin JE,et al Long-term clinical and histological outcomes in patients with spontaneous hepatitis B surface antigen seroclearance. J Hepatol. 2005;42:188–194PubMedCrossRefGoogle Scholar
  90. 90.
    Pollicino T, Squadrito G, Cerenzia G, Cacciola I, Raffa G, Craxi’ A, et al Hepatitis B virus maintains its pro-oncogenic properties in the case of occult HBV infection. Gastroenterology. 2004;126:102–111PubMedCrossRefGoogle Scholar
  91. 91.
    Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, Huang GT, Iloeje UH; REVEAL-HBV Study Group (2006) Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295: 65–73Google Scholar
  92. 92.
    Chan HL, Hui AY, Wong ML, Tse AM, Hung LC, Wong VW, et al Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut. 2004;53: 1494–1498PubMedCrossRefGoogle Scholar
  93. 93.
    Kao JH, Chen PJ, Lai MY, Chen DS. Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology. 2003;124:327–334PubMedCrossRefGoogle Scholar
  94. 94.
    Kuang SY, Jackson PE, Wang JB, Lu PX, Munoz A,Qian GS, et al Specific mutations of hepatitis B virus in plasma predict liver cancer development. Proc Natl Acad Sci USA. 2004;101:3575–3580PubMedCrossRefGoogle Scholar
  95. 95.
    Thorgeirsson S, Grisham J. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:332–336.CrossRefGoogle Scholar
  96. 96.
    Staib F, Hussain SP, Hofseth LJ, Wang XW,Harris CC. TP53 and liver carcinogenesis. Hum Mutat. 2003;21:201–216PubMedCrossRefGoogle Scholar
  97. 97.
    Aguilar F, Hussain SP, Cerutti P. Aflatoxin B1 induces the transversion of G–>T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci U S A. 1993;90:8586–8590PubMedCrossRefGoogle Scholar
  98. 98.
    Laurent-Puig P, Legoix P, Bluteau O, et al Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120:1763–1773PubMedCrossRefGoogle Scholar
  99. 99.
    Boyault S, Rickman DS, de Reynies A, et al Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42PubMedCrossRefGoogle Scholar
  100. 100.
    Lee S, Lee HJ, Kim JH, et al Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol. 2003;163:1371–1377PubMedGoogle Scholar
  101. 101.
    Calvisi DF, Ladu S, Gorden A, et al Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest. 2007;117:2713–2722PubMedCrossRefGoogle Scholar
  102. 102.
    Wei Y, Van Nhieu JT, Prigent S, et al Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, b-catenin expression and clinicalfeatures. Hepatology. 2002;36:692–701PubMedCrossRefGoogle Scholar
  103. 103.
    Li X, Hui AM, Sun L, et al pl6INK4A hypermethylation is associated with hepatitis B virus infection, age, and gender in hepatocellular carcinoma. Clin Cancer Res. 2004;10:7484–7491PubMedCrossRefGoogle Scholar
  104. 104.
    Narimatsu T, Tamori A, Koh N, et al p16 promoter hypermethylation in human hepatocellular carcinoma with or without hepatitis virus infection. Intervirology. 2004; 47:26–31PubMedCrossRefGoogle Scholar
  105. 105.
    Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene. 2006;27:3823–3833CrossRefGoogle Scholar
  106. 106.
    Dvorchik I, Schwartz M, Fiel MI, et al Fractional allelic imbalance could allow for the development of an equitable transplant selection policy for patients with hepatocellular carcinoma. Liver Transpl. 2008;14:443–450PubMedCrossRefGoogle Scholar
  107. 107.
    Aoki H, Kajino K, Arakawa Y, Hino O. Molecular cloning of a rat chromosome putative recombinogenic sequence homologous to the hepatitis B virus encapsidation signal. Proc Natl Acad Sci USA. 1996;93:7300–7304PubMedCrossRefGoogle Scholar
  108. 108.
    Forgues M, Difilippantonio MJ, Linke SP, et al Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol. 2003;23:5282–5292PubMedCrossRefGoogle Scholar
  109. 109.
    Kawai H, Suda T, Aoyagi Y, et al Quantitative evaluation of genomic instability as a possible predictor for development of hepatocellular carcinoma: comparison of loss of heterozygosity and replication error. Hepatology. 2000;31: 1246–1250PubMedCrossRefGoogle Scholar
  110. 110.
    Baek K, Park H, Kang K, et al Overexpression of hepatitis C virus NS5A protein induces chromosome Instability via mitotic cell cycle dysregulation. J Mol Biol. 2006;359:22–34PubMedCrossRefGoogle Scholar
  111. 111.
    Marchio A, Pineau P, Meddeb M, et al Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients. Oncogene. 2000;19:3733–3738PubMedCrossRefGoogle Scholar
  112. 112.
    Wang J, Chenivesse X, Henglein B, Brechot C. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 1990;343:555–557PubMedCrossRefGoogle Scholar
  113. 113.
    Gozuacik I, Murakami Y, Saigo K, et al Identification of human cancer-related genes by naturally occurring Hepatitis B Virus DNA tagging. Oncogene. 2001;20: 6233–6240PubMedCrossRefGoogle Scholar
  114. 114.
    Ferber MJ, Montoya DP, Yu C, et al Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene. 2003;22:3813–3820PubMedCrossRefGoogle Scholar
  115. 115.
    Paterlini-Brechot P, Saigo K, Murakami Y. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. 2003;22:3911–3916PubMedCrossRefGoogle Scholar
  116. 116.
    Murakami Y, Saigo K, Takashima H, et al Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut. 2005;54:1162–1168PubMedCrossRefGoogle Scholar
  117. 117.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–2576PubMedCrossRefGoogle Scholar
  118. 118.
    Wiemann SU, Satyanarayana A, Tsahuridu M, et al Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. Faseb J. 2002;16: 935–942PubMedCrossRefGoogle Scholar
  119. 119.
    Plentz RR, Park YN, Lechel A, et al Telomere shortening and inactivation of cell cycle checkpoints characteriz e human hepatocarcinogenesis. Hepatology. 2007;45: 968–976PubMedCrossRefGoogle Scholar
  120. 120.
    Kojima H, Yokosuka O, Imazeki F, et al Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease. Gastroenterology. 1997;112:493–500PubMedCrossRefGoogle Scholar
  121. 121.
    Ozturk M, Arslan-Ergul A, Bagislar S et al (2008) Senescence and immortality in hepatocellular carcinoma. Cancer LettGoogle Scholar
  122. 122.
    Janknecht R. On the road to immortality: hTERT upregulation in cancer cells. FEBS Lett. 2004;564:9–13PubMedCrossRefGoogle Scholar
  123. 123.
    Terradillos O, Billet O, Renard CA, et al The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene. 1997;14:395–404PubMedCrossRefGoogle Scholar
  124. 124.
    Hsieh YH, Su IJ, Wang HC, Chang WW, Lei HY, Lai MD, et al Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis. 2004;25:2023–2032PubMedCrossRefGoogle Scholar
  125. 125.
    Hildt E, Munz B, Saher G, et al The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice. EMBO J. 2002;21:525–535PubMedCrossRefGoogle Scholar
  126. 126.
    Pang R, Lee TK, Poon RT, et al Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology. 2007;132:1088–1103PubMedCrossRefGoogle Scholar
  127. 127.
    Park IY, Sohn BH, Yu E, et al Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology. 2007;132: 1476–1494PubMedCrossRefGoogle Scholar
  128. 128.
    Jung JK, Arora P, Pagano JS, Jang KL. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res. 2007;67: 5771–5778PubMedCrossRefGoogle Scholar
  129. 129.
    Zheng DL, Zhang L, Cheng N, Xu X, Deng Q, Teng XM, et al0 Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. J Hepatol. 2009;50:377–387PubMedCrossRefGoogle Scholar
  130. 130.
    Yu X, Mertz JE. Differential regulation of the pre-C and pregenomic promoters of human hepatitis B virus by members of the nuclear receptor superfamily. J Virol. 1997;71:9366–9374PubMedGoogle Scholar
  131. 131.
    Chami M, Oulès B, Paterlini-Bréchot P. Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochimica et Biophysica Acta. 2006;1763:1344–1362PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Dipartimento di Medicina InternaSapienza Universita’ di RomaRomeItaly

Personalised recommendations