Calcium Signaling

  • Thierry TordjmannEmail author


In normal eukaryotic cells, the concentration of free Ca2+ in the cytosol ([Ca2+]i) is actively kept much lower (100–200 nM) than extracellular (1–2 mM) and endoplasmic reticulum (ER) (0.5 mM) Ca2+ concentrations [1]. The cytosol, with its very low concentration of free calcium, is located at the interface of these two highly calcium-rich environments. This results in the cytosol, being a site of major and rapid variations in [Ca2+]i in response to the transfer of small quantities of Ca2+ from the extracellular medium or intracellular storage compartments [2]. These variations in [Ca2+]i (“calcium signals”), induced by agonists such as hormones and neurotransmitters, constitute a kind of language which is translated into physiological responses by the cells. Such calcium signals, highly organized in space and time, orchestrate a wide array of physiological processes from the subcellular to the whole tissue ­levels [2 –4].


Liver Regeneration Calcium Signal Endoplasmic Reticulum Calcium InsP3 Receptor Intracellular Calcium Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10–14CrossRefPubMedGoogle Scholar
  2. 2.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529CrossRefPubMedGoogle Scholar
  3. 3.
    Dupont G, Swillens S, Clair C, Tordjmann T, Combettes L (2000) Hierarchical organization of calcium signals in hepatocytes: from experiments to models. Biochim Biophys Acta 1498(2–3):134–152PubMedGoogle Scholar
  4. 4.
    Thomas AP, Bird G, Hajnoczky G, Robb-Gaspers L, Putney JW (1996) Spatial and temporal aspects of cellular calcium signalling. FASEB J 10:1505–1517PubMedGoogle Scholar
  5. 5.
    Woods NM, Cuthbertson KS, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-­stimulated hepatocytes. Nature 319:600–602CrossRefPubMedGoogle Scholar
  6. 6.
    Rooney T, Renard D, Sass E, Thomas A (1991) Oscillatory cytosolic calcium wave independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem 266:12272–12282PubMedGoogle Scholar
  7. 7.
    Nathanson MH, Burgstahler AD, Mennone A, Fallon MB, Gonzalez CB, Saez JC (1995) Ca2+ waves are organized among hepatocytes in the intact organ. Am J Physiol 273: G167–G171Google Scholar
  8. 8.
    Robb-Gaspers LD, Thomas AP (1995) Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem 270:8102–8107CrossRefPubMedGoogle Scholar
  9. 9.
    Patel S, Robb-Gaspers LD, Stellato KA, Shon M, Thomas AP (1999) Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver. Nat Cell Biol 1:467–471CrossRefPubMedGoogle Scholar
  10. 10.
    Tordjmann T, Berthon B, Jaquemin E, Clair C, Stelly N, Guillon G, Claret M, Combettes L (1998) Receptor-oriented intercellular calcium waves mediated by a gradient in sensitivity to vasopressin in rat hepatocytes. EMBO J 17: 4695–4703CrossRefPubMedGoogle Scholar
  11. 11.
    Minagawa N, Ehrlich BE, Nathanson MH (2006) Calcium signaling in cholangiocytes. World J Gastroenterol 12(22):3466–3470PubMedGoogle Scholar
  12. 12.
    Kruglov EA, Correa PR, Arora G, Yu J, Nathanson MH, Dranoff JA (2007) Molecular basis for calcium signaling in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292(4):G975–G982CrossRefGoogle Scholar
  13. 13.
    Taylor CW (1998) Inositol trisphosphate receptors: Ca2+ modulated intracellular Ca2+ channels. Biochim Biophys Acta 1436:19–33PubMedGoogle Scholar
  14. 14.
    Woods NM, Cuthbertson KS, Cobbold PH (1987) Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium 8(1): 79–100CrossRefPubMedGoogle Scholar
  15. 15.
    Putney JW Jr (2007) New molecular players in capacitative Ca2+ entry. J Cell Sci 120(Pt 12):1959–1965CrossRefPubMedGoogle Scholar
  16. 16.
    Litjens T, Nguyen T, Castro J, Aromataris EC, Jones L, Barritt GJ, Rychkov GY (2007) Phospholipase C-gamma1 is required for the activation of store-operated Ca2+ channels in liver cells. Biochem J 405(2):269–276CrossRefPubMedGoogle Scholar
  17. 17.
    El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N (2008) Capiod T Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47(6): 2068–2077CrossRefPubMedGoogle Scholar
  18. 18.
    Jones BF, Boyles RR, Hwang SY, Bird GS, Putney JW (2008) Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology 48(4):1273–1281CrossRefPubMedGoogle Scholar
  19. 19.
    Chen J, Barritt GJ (2003) Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca(2+)-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. Biochem J 373(Pt 2):327–336CrossRefPubMedGoogle Scholar
  20. 20.
    Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1, 4, 5-trisphosphate. Science 258(5089):1812–1815CrossRefPubMedGoogle Scholar
  21. 21.
    Rooney TA, Sass EJ, Thomas AP (1990) Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J Biol Chem 265(18): 10792–10796PubMedGoogle Scholar
  22. 22.
    Wojcikiewicz RJ (1995) Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 270:11678–11683CrossRefPubMedGoogle Scholar
  23. 23.
    Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. Embo J 18:1303–1308CrossRefPubMedGoogle Scholar
  24. 24.
    Newton CL, Mignery GA, Südhof TC (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1, 4, 5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269(46):28613–28619PubMedGoogle Scholar
  25. 25.
    Hirata K, Pusl T, O’Neill AF, Dranoff JA, Nathanson MH (2002) The type II inositol 1, 4, 5-trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes. Gastroenterology 122:1088–1100CrossRefPubMedGoogle Scholar
  26. 26.
    Hernandez E, Leite MF, Guerra MT, Kruglov EA, Bruna-Romero O, Rodrigues MA, Gomes DA, Giordano FJ, Dranoff JA, Nathanson MH (2007) The spatial distribution of inositol 1, 4, 5-trisphosphate receptor isoforms shapes Ca2+ waves. J Biol Chem 282(13):10057–10067CrossRefPubMedGoogle Scholar
  27. 27.
    Nagata J, Guerra MT, Shugrue CA, Gomes DA, Nagata N, Nathanson MH (2007) Lipid rafts establish calcium waves in hepatocytes. Gastroenterology 133(1):256–267CrossRefPubMedGoogle Scholar
  28. 28.
    Nathanson M, Burgstahler A (1992) Coordination of hormone-induced calcium signals in isolated rat hepatocyte couplets. Demonstration with confocal microscopy. Mol Biol Cell 3:113–121PubMedGoogle Scholar
  29. 29.
    Combettes L, Tran D, Tordjmann T, Laurent M, Berthon B, Claret M (1994) Ca(2+)-mobilizing hormones induce sequentially ordered Ca2+ signals in multicellular systems of rat hepatocytes. Biochem J 304(Pt 2):585–594PubMedGoogle Scholar
  30. 30.
    Tordjmann T, Berthon B, Claret M, Combettes L (1997) Coordi­nated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junctions and agonist. EMBO J 16:5398–5407CrossRefPubMedGoogle Scholar
  31. 31.
    Jungermann K, Katz N (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69:708–764PubMedGoogle Scholar
  32. 32.
    Tordjmann T, Berthon B, Combettes L, Claret M (1996) The location of hepatocytes in the rat liver acinus determines their sensitivity to calcium-mobilizing hormones. Gastroenterology 111:1343–1352CrossRefPubMedGoogle Scholar
  33. 33.
    Clair C, Chalumeau C, Tordjmann T, Poggioli J, Erneux C, Dupont G, Combettes L (2001) Investigation of the roles of Ca(2+) and InsP(3) diffusion in the coordination of Ca(2+) signals between connected hepatocytes. J Cell Sci 114(Pt 11):1999–2007PubMedGoogle Scholar
  34. 34.
    Dupont G, Tordjmann T, Clair C, Swillens S, Claret M, Combettes L (2000) Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes. FASEB J 14:279–289PubMedGoogle Scholar
  35. 35.
    Leite MF, Hirata K, Pusl T, Burgstahler AD, Okazaki K, Ortega JM, Goes AM, Prado MA, Spray DC, Nathanson MH (2002) Molecular basis for pacemaker cells in epithelia. J Biol Chem 277(18):16313–16323CrossRefPubMedGoogle Scholar
  36. 36.
    Meyer T, Stryer L (1991) Calcium spiking. Annu Rev Biophys Biophys Chem 20:153–174CrossRefPubMedGoogle Scholar
  37. 37.
    De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230CrossRefPubMedGoogle Scholar
  38. 38.
    Hanson P, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12:943–956CrossRefPubMedGoogle Scholar
  39. 39.
    Gall D, Baus E, Dupont G (2000) Activation of the liver glycogen phosphorylase by Ca(2+) oscillations: a theoretical study. J Theor Biol 207(4):445–454CrossRefPubMedGoogle Scholar
  40. 40.
    Dolmetsch R, Xu K, Lewis R (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936CrossRefPubMedGoogle Scholar
  41. 41.
    Hajnoczky G, Robb-Gaspers L, Seitz M, Thomas A (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424CrossRefPubMedGoogle Scholar
  42. 42.
    Robb-Gaspers L, Rutter G, Burnett P, Hajnoczky G, Denton R, Thomas A (1998) Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim Biophys Acta 1366: 17–32CrossRefPubMedGoogle Scholar
  43. 43.
    Exton JH (1987) Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab Rev 3(1): 163–183CrossRefPubMedGoogle Scholar
  44. 44.
    Wurzinger R, Englisch R, Roka S, Langer R, Roden M, Graf J (2001) Intracellular calcium in the isolated rat liver: correlation to glucose release, K(+) balance and bile flow. Cell Calcium 30(6):403–412CrossRefPubMedGoogle Scholar
  45. 45.
    Beuers U, Nathanson MH, Isales CM, Boyer JL (1993) Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest 92(6):2984–2993CrossRefPubMedGoogle Scholar
  46. 46.
    Beuers U, Bilzer M, Chittattu A, Kullak-Ublick GA, Keppler D, Paumgartner G, Dombrowski F (2001) Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology 33(5): 1206–1216CrossRefPubMedGoogle Scholar
  47. 47.
    Nathanson MH, Gautam A, Ng OC, Bruck R, Boyer JL (1992) Hormonal regulation of paracellular permeability in isolated rat hepatocyte couplets. Am J Physiol 262: G1079–G1086Google Scholar
  48. 48.
    Kitamura T, Brauneis U, Gatmaitan Z, Arias IM (1991) Extracellular ATP, intracellular calcium and canalicular contraction in rat hepatocyte doublets. Hepatology 14:640–647CrossRefPubMedGoogle Scholar
  49. 49.
    Serrière V, Tran D, Stelly N, Claret M, Alonso G, Tordjmann T, Guillon G (2008) Vasopressin-induced morphological changes in polarized rat hepatocyte multiplets: dual calcium-dependent effects. Cell Calcium 43(1):95–104CrossRefPubMedGoogle Scholar
  50. 50.
    Ito K, Miyashita Y, Kasai H (1997) Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J 16(2):242–251CrossRefPubMedGoogle Scholar
  51. 51.
    Serrière V, Berthon B, Boucherie S, Jacquemin E, Guillon G, Claret M, Tordjmann T (2001) Vasopressin receptor distribution in the liver controls calcium wave propagation and bile flow. FASEB J 15(8):1484–1486PubMedGoogle Scholar
  52. 52.
    Nicou A, Serrière V, Prigent S, Boucherie S, Combettes L, Guillon G, Alonso G, Tordjmann T (2003) Hypothalamic vasopressin release and hepatocyte Ca2+ signaling during liver regeneration: an interplay stimulating liver growth and bile flow. FASEB J 17(13):1901–1903PubMedGoogle Scholar
  53. 53.
    Echevarría W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH (2003) Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5(5): 440–446CrossRefPubMedGoogle Scholar
  54. 54.
    Pusl T, Wu JJ, Zimmerman TL, Zhang L, Ehrlich BE, Berchtold MW, Hoek JB, Karpen SJ, Nathanson MH, Bennett AM (2002) Epidermal growth factor-mediated activation of the ETS domain transcription factor Elk-1 requires nuclear calcium. J Biol Chem 277(30):27517–27527CrossRefPubMedGoogle Scholar
  55. 55.
    Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM, Nathanson MH (2007) Nucleoplasmic calcium is required for cell proliferation.J Biol Chem 282(23):17061–17068CrossRefPubMedGoogle Scholar
  56. 56.
    Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, Bennett AM, Nathanson MH (2008) c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 283(7):4344–4351CrossRefPubMedGoogle Scholar
  57. 57.
    Gomes DA, Leite MF, Bennett AM, Nathanson MH (2006) Calcium signaling in the nucleus. Can J Physiol Pharmacol 84(3–4):325–332CrossRefPubMedGoogle Scholar
  58. 58.
    Rodrigues MA, Gomes DA, Andrade VA, Leite MF, Nathanson MH (2008) Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology 48:1621–1631CrossRefPubMedGoogle Scholar
  59. 59.
    Bezin S, Fossier P, Cancela JM (2008) Nucleoplasmic reticulum is not essential in nuclear calcium signalling mediated by cyclic ADPribose in primary neurons. Pflugers Arch 456(3):581–586CrossRefPubMedGoogle Scholar
  60. 60.
    Whitfield JF, Boynton AL, MacManus JP, Rixon RH, Sikorska M, Tsang B, Walker PR, Swierenga SH (1980) The roles of calcium and cyclic AMP in cell proliferation. AnnN Y Acad Sci 339:216–240CrossRefPubMedGoogle Scholar
  61. 61.
    Katsumata T, Yamaguchi M (1998) Inhibitory effect of calcium-binding protein regucalcin on protein kinase activity in the nuclei of regenerating rat liver. J Cell Biochem 71: 569–576CrossRefPubMedGoogle Scholar
  62. 62.
    Takahasi H, Yamaguchi M (1996) Enhancement of plasma membrane (Ca(2+)-Mg2+)-ATPase activity in regenerating rat liver: involvement of endogenous activating protein regucalcin. Mol Cell Biochem 162:133–138CrossRefPubMedGoogle Scholar
  63. 63.
    Diaz-Munoz M, Canedo-Merino R, Gutierrez-Salinas J, Hernandez-Munoz R (1998) Modifications of intracellular calcium release channels and calcium mobilization following 70% hepatectomy. Arch Biochem Biophys 349: 105–112CrossRefPubMedGoogle Scholar
  64. 64.
    Zhang BH, Horsfield BP, Farrell GC (1996) Chronic ethanol administration to rats decreases receptor-operated mobilization of intracellular ionic calcium in cultured hepatocytes and inhibits 1, 4, 5-inositol trisphosphate production: relevance to impaired liver regeneration. J Clin Invest 98:1237–1244CrossRefPubMedGoogle Scholar
  65. 65.
    Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW (1999) Crabtree GR. Nature 401:703–708CrossRefPubMedGoogle Scholar
  66. 66.
    See V, Rajala NK, Spiller DG, White MR (2004) Calcium-dependent regulation of the cell cycle via a novel MAPK-NF-kappaB pathway in Swiss 3 T3 cells. J Cell Biol 166: 661–672CrossRefPubMedGoogle Scholar
  67. 67.
    Kupzig S, Walker SA, Cullen PJ (2005) The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc Natl Acad Sci U S A 102(21):7577–7582CrossRefPubMedGoogle Scholar
  68. 68.
    Nicou A, Serrière V, Hilly M, Prigent S, Combettes L, Guillon G, Tordjmann T (2007) Remodelling of calcium signalling during liver regeneration in the rat. J Hepatol 46(2): 247–256CrossRefPubMedGoogle Scholar
  69. 69.
    Cruise JL, Knechtle SJ, Bollinger RR, Kuhn C, Michalopoulos G (1987) Alpha 1-adrenergic effects and liver regeneration. Hepatology 7(6):1189–1194CrossRefPubMedGoogle Scholar
  70. 70.
    Thevananther S, Sun H, Li D, Arjunan V, Awad S, Wyllie S et al (2004) Hepatology 39:393–402CrossRefPubMedGoogle Scholar
  71. 71.
    Mine T, Kojima I, Ogata E, Nakamura T (1991) Comparison of effects of HGF and EGF on cellular calcium in rat hepatocytes. Biochem Biophys Res Commun 181(3):1173–1180CrossRefPubMedGoogle Scholar
  72. 72.
    Kahl C, Means A (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736CrossRefPubMedGoogle Scholar
  73. 73.
    Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7(7):519–530CrossRefPubMedGoogle Scholar
  74. 74.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565CrossRefPubMedGoogle Scholar
  75. 75.
    Joseph SK, Hajnóczky G (2007) IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 12(5):951–968CrossRefPubMedGoogle Scholar
  76. 76.
    Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1, 4, 5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5(12):1051–1061CrossRefPubMedGoogle Scholar
  77. 77.
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616):135–139CrossRefPubMedGoogle Scholar
  78. 78.
    Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K, Matsuyama S, Herlitze S, Roderick HL, Bootman MD, Mignery GA, Parys JB, De Smedt H, Distelhorst CW (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31(2):255–265CrossRefPubMedGoogle Scholar
  79. 79.
    Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J, Missiaen L, Callewaert G, Parys JB, De Smedt H (2004) Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 279(41): 43227–43236CrossRefPubMedGoogle Scholar
  80. 80.
    Nieuwenhuijs VB, De Bruijn MT, Padbury RT, Barritt GJ (2006) Hepatic ischemia-reperfusion injury: roles of Ca2+ and other intracellular mediators of impaired bile flow and hepatocyte damage. Dig Dis Sci 51(6):1087–1102CrossRefPubMedGoogle Scholar
  81. 81.
    Isozaki H, Fujii K, Nomura E, Hara H (2000) Calcium concentration in hepatocytes during liver ischaemia-reperfusion injury and the effects of diltiazem and citrate on perfused rat liver. Eur J Gastroenterol Hepatol 12(3):291–297CrossRefPubMedGoogle Scholar
  82. 82.
    Elimadi A, Haddad PS (2001) Cold preservation-warm reoxygenation increases hepatocyte steady-state Ca(2+) and response to Ca(2+)-mobilizing agonist. Am J Physiol Gastrointest Liver Physiol 281(3):G809–G815Google Scholar
  83. 83.
    Auger S, Vallerand D, Haddad PS (2003) Cold preservation-warm reperfusion perturbs cytosolic calcium ion homeostasis in rat liver sinusoidal endothelial cells. Liver Transpl 9(2): 150–159CrossRefPubMedGoogle Scholar
  84. 84.
    Carini R, Castino R, De Cesaris MG, Splendore R, Démoz M, Albano E, Isidoro C (2004) Preconditioning-induced cytoprotection in hepatocytes requires Ca(2+)-dependent exocytosis of lysosomes. J Cell Sci 117(Pt 7):1065–1077CrossRefPubMedGoogle Scholar
  85. 85.
    Jiang N, Zhang ZM, Liu L, Zhang C, Zhang YL, Zhang ZC (2006) Effects of Ca2+ channel blockers on store-operated Ca2+ channel currents of Kupffer cells after hepatic ischemia/reperfusion injury in rats. World J Gastroenterol 12(29):4694–4698PubMedGoogle Scholar
  86. 86.
    Chami M, Oulès B, Paterlini-Bréchot P (2006) Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochim Biophys Acta 1763(11): 1344–1362CrossRefPubMedGoogle Scholar
  87. 87.
    Chami M, Gozuacik D, Saigo K, Capiod T, Falson P, Lecoeur H, Urashima T, Beckmann J, Gougeon ML, Claret M, le Maire M, Bréchot C, Paterlini-Bréchot P (2000) Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene 19(25):2877–2886CrossRefPubMedGoogle Scholar
  88. 88.
    Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, Pinton P, Lecoeur H, Gougeon ML, le Maire M, Rizzuto R, Bréchot C, Paterlini-Bréchot P (2001) SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 153(6):1301–1314CrossRefPubMedGoogle Scholar
  89. 89.
    Bouchard MJ, Wang LH, Schneider RJ (2001) Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science. 294:2376–2378CrossRefPubMedGoogle Scholar
  90. 90.
    McClain SL, Clippinger AJ, Lizzano R, Bouchard MJ (2007) Hepatitis B virus replication is associated with an HBx-dependent mitochondrion-regulated increase in cytosolic calcium levels. J Virol. 81:12061–12065CrossRefPubMedGoogle Scholar
  91. 91.
    Chami M, Ferrari D, Nicotera P, Paterlini-Bréchot P, Rizzuto R (2003) Caspase-dependent alterations of Ca2+ signaling in the induction of apoptosis by hepatitis B virus X protein. J Biol Chem 278(34):31745–31755CrossRefPubMedGoogle Scholar
  92. 92.
    Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R, Paterlini-Bréchot P (2005) Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 21;24(31): 4921–4933CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.INSERM U757Université Paris sudOrsayFrance

Personalised recommendations