VEGF Signaling

  • David Semela
  • Jean-François DufourEmail author


Vascular endothelial growth factor (VEGF) is the main growth factor for angiogenesis and vasculogenesis. Identified as a vascular endothelial cell mitogen and survival factor, it has been sequenced and cloned by Ferrara and Connolly in 1989 [1, 2]. Intense research over the past years has deciphered the gene, molecular pathways, receptors, and functions of this angiogenic factor [3]. VEGF plays a key role in liver regeneration, hepatic fibrogenesis, portal hypertension, hepatocarcinogenesis, and malignant ascites formation.


Vascular Endothelial Growth Factor Vascular Endothelial Growth Factor Receptor Vascular Endothelial Growth Factor Expression Liver Regeneration Hepatic Stellate Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309PubMedCrossRefGoogle Scholar
  2. 2.
    Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312PubMedCrossRefGoogle Scholar
  3. 3.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803PubMedCrossRefGoogle Scholar
  4. 4.
    Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25PubMedCrossRefGoogle Scholar
  5. 5.
    Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273:13313–13316PubMedCrossRefGoogle Scholar
  6. 6.
    Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273: 30336–30343PubMedCrossRefGoogle Scholar
  7. 7.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165PubMedCrossRefGoogle Scholar
  8. 8.
    Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 93:14765–14770PubMedCrossRefGoogle Scholar
  9. 9.
    Unemori EN, Ferrara N, Bauer EA, Amento EP (1992) Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol 153:557–562PubMedCrossRefGoogle Scholar
  10. 10.
    Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, Jesty J (1998) Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase ­production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer 75:780–786PubMedCrossRefGoogle Scholar
  11. 11.
    Pepper MS, Ferrara N, Orci L, Montesano R (1991) Vascular endothelial growth factor (VEGF) induces plasminogen ­activators and plasminogen activator inhibitor-1  in ­microvascular endothelial cells. Biochem Biophys Res Commun 181: 902–906PubMedCrossRefGoogle Scholar
  12. 12.
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985PubMedCrossRefGoogle Scholar
  13. 13.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMedGoogle Scholar
  14. 14.
    Yokomori H, Oda M, Yoshimura K, Nagai T, Ogi M, Nomura M, Ishii H (2003) Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells. Liver Int 23:467–475PubMedCrossRefGoogle Scholar
  15. 15.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439PubMedCrossRefGoogle Scholar
  16. 16.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442PubMedCrossRefGoogle Scholar
  17. 17.
    Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563PubMedCrossRefGoogle Scholar
  18. 18.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRefGoogle Scholar
  19. 19.
    Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M,Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66PubMedCrossRefGoogle Scholar
  20. 20.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  21. 21.
    Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835PubMedCrossRefGoogle Scholar
  22. 22.
    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201PubMedCrossRefGoogle Scholar
  23. 23.
    de Bont ES, Guikema JE, Scherpen F, Meeuwsen T, Kamps WA, Vellenga E, Bos NA (2001) Mobilized human CD34 + hematopoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodeficient mouse model of human non-Hodgkin’s lymphoma. Cancer Res 61:7654–7659PubMedGoogle Scholar
  24. 24.
    Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346PubMedGoogle Scholar
  25. 25.
    Fujii H, Hirose T, Oe S, Yasuchika K, Azuma H, Fujikawa T, Nagao M et al (2002) Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice.J Hepatol 36:653–659PubMedCrossRefGoogle Scholar
  26. 26.
    Jelkmann W (2001) Pitfalls in the measurement of circulating vascular endothelial growth factor. Clin Chem 47:617–623PubMedGoogle Scholar
  27. 27.
    Webb NJ, Bottomley MJ, Watson CJ, Brenchley PE (1998) Vascular endothelial growth factor (VEGF) is released from platelets during blood clotting: implications for measurement of circulating VEGF levels in clinical disease. Clin Sci (Lond) 94:395–404Google Scholar
  28. 28.
    Banks RE, Forbes MA, Kinsey SE, Stanley A, Ingham E, Walters C, Selby PJ (1998) Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br J Cancer 77:956–964PubMedGoogle Scholar
  29. 29.
    Vincenti V, Cassano C, Rocchi M, Persico G (1996) Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation 93:1493–1495PubMedGoogle Scholar
  30. 30.
    Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266:11947–11954PubMedGoogle Scholar
  31. 31.
    Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865PubMedGoogle Scholar
  32. 32.
    Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037PubMedGoogle Scholar
  33. 33.
    Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Mazarguil H, Clamens S, Bayard F (1997) Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem 272:13390–13396PubMedCrossRefGoogle Scholar
  34. 34.
    Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A 88:9267–9271PubMedCrossRefGoogle Scholar
  35. 35.
    Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583PubMedCrossRefGoogle Scholar
  36. 36.
    Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A et al (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93:2576–2581PubMedCrossRefGoogle Scholar
  37. 37.
    Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. Embo J 15:1751PubMedGoogle Scholar
  38. 38.
    Lee J, Gray A, Yuan J, Luoh SM, Avraham H, Wood WI (1996) Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci U S A 93:1988–1992PubMedCrossRefGoogle Scholar
  39. 39.
    Orlandini M, Marconcini L, Ferruzzi R, Oliviero S (1996) Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci U S A 93:11675–11680PubMedCrossRefGoogle Scholar
  40. 40.
    Karkkainen MJ, Makinen T, Alitalo K (2002) Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol 4:E2–E5CrossRefGoogle Scholar
  41. 41.
    Farnebo F, Piehl F, Lagercrantz J (1999) Restricted expression pattern of vegf-d in the adult and fetal mouse: high expression in the embryonic lung. Biochem Biophys Res Commun 257:891–894PubMedCrossRefGoogle Scholar
  42. 42.
    Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M et al (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425PubMedCrossRefGoogle Scholar
  43. 43.
    Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94:664–670PubMedCrossRefGoogle Scholar
  44. 44.
    Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68:84–92PubMedGoogle Scholar
  45. 45.
    Kieser A, Weich HA, Brandner G, Marme D, Kolch W (1994) Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9:963–969PubMedGoogle Scholar
  46. 46.
    Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D (1995) Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3 T3 cells.J Biol Chem 270:25915–25919PubMedCrossRefGoogle Scholar
  47. 47.
    Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP (1997) The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 17:5629–5639PubMedGoogle Scholar
  48. 48.
    Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G (2002) Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 5:237–256PubMedCrossRefGoogle Scholar
  49. 49.
    Josko J, Mazurek M (2004) Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monit 10: RA89–RA98Google Scholar
  50. 50.
    Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, LeBlanc AC et al (2008) Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 68:6779–6788PubMedCrossRefGoogle Scholar
  51. 51.
    Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47PubMedCrossRefGoogle Scholar
  52. 52.
    Gerber HP, Condorelli F, Park J, Ferrara N (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272: 23659–23667PubMedCrossRefGoogle Scholar
  53. 53.
    Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ (1999) Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 10:907–919PubMedGoogle Scholar
  54. 54.
    Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271:2746–2753PubMedCrossRefGoogle Scholar
  55. 55.
    Liu LX, Lu H, Luo Y, Date T, Belanger AJ, Vincent KA, Akita GY et al (2002) Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem Biophys Res Commun 291:908–914PubMedCrossRefGoogle Scholar
  56. 56.
    Shima DT, Deutsch U, D’Amore PA (1995) Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett 370:203–208PubMedCrossRefGoogle Scholar
  57. 57.
    Levy NS, Chung S, Furneaux H, Levy AP (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273: 6417–6423PubMedCrossRefGoogle Scholar
  58. 58.
    Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5: 519–524PubMedGoogle Scholar
  59. 59.
    Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6: 1677–1683PubMedGoogle Scholar
  60. 60.
    Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR (1991) A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci U S A 88:9026–9030PubMedCrossRefGoogle Scholar
  61. 61.
    de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989–991PubMedCrossRefGoogle Scholar
  62. 62.
    Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10:135–147PubMedGoogle Scholar
  63. 63.
    Ross MA, Sander CM, Kleeb TB, Watkins SC, Stolz DB (2001) Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology 34:1135–1148PubMedCrossRefGoogle Scholar
  64. 64.
    LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, Hillan KJ et al (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299:890–893PubMedCrossRefGoogle Scholar
  65. 65.
    Yamane A, Seetharam L, Yamaguchi S, Gotoh N, Takahashi T, Neufeld G, Shibuya M (1994) A new communication system between hepatocytes and sinusoidal endothelial cells in liver through vascular endothelial growth factor and Flt tyrosine kinase receptor family (Flt-1 and KDR/Flk-1). Oncogene 9:2683–2690PubMedGoogle Scholar
  66. 66.
    Mochida S, Ishikawa K, Inao M, Shibuya M, Fujiwara K (1996) Increased expressions of vascular endothelial growth factor and its receptors, flt-1 and KDR/flk-1, in regenerating rat liver. Biochem Biophys Res Commun 226:176–179PubMedCrossRefGoogle Scholar
  67. 67.
    Ankoma-Sey V, Matli M, Chang KB, Lalazar A, Donner DB, Wong L, Warren RS et al (1998) Coordinated induction of VEGF receptors in mesenchymal cell types during rat hepatic wound healing. Oncogene 17:115–121PubMedCrossRefGoogle Scholar
  68. 68.
    Mashiba S, Mochida S, Ishikawa K, Inao M, Matsui A, Ohno A, Ikeda H et al (1999) Inhibition of hepatic stellate cell contraction during activation in vitro by vascular endothelial growth factor in association with upregulation of FLT tyrosine kinase receptor family, FLT-1. Biochem Biophys Res Commun 258:674–678PubMedCrossRefGoogle Scholar
  69. 69.
    Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97: 785–791PubMedCrossRefGoogle Scholar
  70. 70.
    Davidson AJ, Zon LI (2003) Biomedicine: love, honor, and protect (your liver). Science 299:835–837PubMedCrossRefGoogle Scholar
  71. 71.
    Nomura M, Yamagishi S, Harada S, Hayashi Y, Yamashima T, Yamashita J, Yamamoto H (1995) Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem 270:28316–28324PubMedCrossRefGoogle Scholar
  72. 72.
    Couper LL, Bryant SR, Eldrup-Jorgensen J, Bredenberg CE, Lindner V (1997) Vascular endothelial growth factor increases the mitogenic response to fibroblast growth factor-2 in vascular smooth muscle cells in vivo via expression of fms-like tyrosine kinase-1. Circ Res 81: 932–939PubMedGoogle Scholar
  73. 73.
    Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system.J Neurosci 19:5731–5740PubMedGoogle Scholar
  74. 74.
    Fong GH, Zhang L, Bryce DM, Peng J (1999) Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126:3015–3025PubMedGoogle Scholar
  75. 75.
    Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354PubMedCrossRefGoogle Scholar
  76. 76.
    Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61:1207–1213PubMedGoogle Scholar
  77. 77.
    Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269:25646–25654PubMedGoogle Scholar
  78. 78.
    Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–26995PubMedGoogle Scholar
  79. 79.
    Stacker SA, Vitali A, Caesar C, Domagala T, Groenen LC, Nice E, Achen MG et al (1999) A mutant form of vascular endothelial growth factor (VEGF) that lacks VEGF receptor-2 activation retains the ability to induce vascular permeability. J Biol Chem 274:34884–34892PubMedCrossRefGoogle Scholar
  80. 80.
    Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9:936–943PubMedCrossRefGoogle Scholar
  81. 81.
    Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8:831–840PubMedGoogle Scholar
  82. 82.
    Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K et al (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417:954–958PubMedCrossRefGoogle Scholar
  83. 83.
    Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300PubMedCrossRefGoogle Scholar
  84. 84.
    Kendall RL, Wang G, Thomas KA (1996) Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 226:324–328PubMedCrossRefGoogle Scholar
  85. 85.
    Barleon B, Reusch P, Totzke F, Herzog C, Keck C, Martiny-Baron G, Marme D (2001) Soluble VEGFR-1 secreted by endothelial cells and monocytes is present in human serum and plasma from healthy donors. Angiogenesis 4:143–154PubMedCrossRefGoogle Scholar
  86. 86.
    Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Bohlen P (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187:1579–1586PubMedCrossRefGoogle Scholar
  87. 87.
    Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular ­endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 90: 7533–7537PubMedCrossRefGoogle Scholar
  88. 88.
    Shay-Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E, Resnick N (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A 99:9462–9467PubMedCrossRefGoogle Scholar
  89. 89.
    Pajusola K, Aprelikova O, Korhonen J, Kaipainen A, Pertovaara L, Alitalo R, Alitalo K (1992) FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res 52:5738–5743PubMedGoogle Scholar
  90. 90.
    Finnerty H, Kelleher K, Morris GE, Bean K, Merberg DM, Kriz R, Morris JC et al (1993) Molecular cloning of murine FLT and FLT4. Oncogene 8:2293–2298PubMedGoogle Scholar
  91. 91.
    Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 92:3566–3570PubMedCrossRefGoogle Scholar
  92. 92.
    Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745PubMedCrossRefGoogle Scholar
  93. 93.
    Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12:13–19PubMedCrossRefGoogle Scholar
  94. 94.
    Neufeld G, Kessler O, Herzog Y (2002) The interaction of neuropilin-1 and neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol 515:81–90PubMedGoogle Scholar
  95. 95.
    Fuh G, Li B, Crowley C, Cunningham B, Wells JA (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273:11197–11204PubMedCrossRefGoogle Scholar
  96. 96.
    Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Sci STKE 2001:RE21CrossRefGoogle Scholar
  97. 97.
    Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924PubMedCrossRefGoogle Scholar
  98. 98.
    Guo D, Jia Q, Song HY, Warren RS, Donner DB (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 270:6729–6733PubMedCrossRefGoogle Scholar
  99. 99.
    Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96PubMedCrossRefGoogle Scholar
  100. 100.
    Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10:1670–1682PubMedCrossRefGoogle Scholar
  101. 101.
    Fabris L, Cadamuro M, Libbrecht L, Raynaud P, Spirli C, Fiorotto R, Okolicsanyi L et al (2008) Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology 47:719–728PubMedCrossRefGoogle Scholar
  102. 102.
    Drixler TA, Vogten MJ, Ritchie ED, Van Vroonhoven TJ, Gebbink MF, Voest EE, Borel Rinkes IH (2002) Liver regeneration is an angiogenesis- associated phenomenon. Ann Surg 236:703–712PubMedCrossRefGoogle Scholar
  103. 103.
    Greene AK, Wiener S, Puder M, Yoshida A, Shi B, Perez-Atayde AR, Efstathiou JA et al (2003) Endothelial-directed hepatic regeneration after partial hepatectomy. Ann Surg 237:530–535PubMedCrossRefGoogle Scholar
  104. 104.
    Sato T, El-Assal ON, Ono T, Yamanoi A, Dhar DK, Nagasue N (2001) Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver. J Hepatol 34:690–698PubMedCrossRefGoogle Scholar
  105. 105.
    Martinez-Hernandez A, Amenta PS (1995) The extracellular matrix in hepatic regeneration. Faseb J 9:1401–1410PubMedGoogle Scholar
  106. 106.
    Redaelli CA, Semela D, Carrick FE, Ledermann M, Candinas D, Sauter B, Dufour JF (2004) Effect of vascular endothelial growth factor on functional recovery after hepatectomy in lean and obese mice. J Hepatol 40: 305–312PubMedCrossRefGoogle Scholar
  107. 107.
    Taniguchi E, Sakisaka S, Matsuo K, Tanikawa K, Sata M (2001) Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats. J Histochem Cytochem 49:121–130PubMedGoogle Scholar
  108. 108.
    Assy N, Spira G, Paizi M, Shenkar L, Kraizer Y, Cohen T, Neufeld G et al (1999) Effect of vascular endothelial growth factor on hepatic regenerative activity following partial hepatectomy in rats. J Hepatol 30:911–915PubMedCrossRefGoogle Scholar
  109. 109.
    Kalluri R, Sukhatme VP (2000) Fibrosis and angiogenesis. Curr Opin Nephrol Hypertens 9:413–418PubMedCrossRefGoogle Scholar
  110. 110.
    Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3: 422–433PubMedCrossRefGoogle Scholar
  111. 111.
    Yamamoto T, Kobayashi T, Phillips MJ (1984) Perinodular arteriolar plexus in liver cirrhosis. Scanning electron microscopy of microvascular casts. Liver 4:50–54PubMedGoogle Scholar
  112. 112.
    Haratake J, Hisaoka M, Yamamoto O, Horie A (1991) Morphological changes of hepatic microcirculation in experimental rat cirrhosis: a scanning electron microscopic study. Hepatology 13:952–956PubMedCrossRefGoogle Scholar
  113. 113.
    Huet PM, Goresky CA, Villeneuve JP, Marleau D, Lough JO (1982) Assessment of liver microcirculation in human cirrhosis. J Clin Invest 70:1234–1244PubMedCrossRefGoogle Scholar
  114. 114.
    Villeneuve JP, Dagenais M, Huet PM, Roy A, Lapointe R, Marleau D (1996) The hepatic microcirculation in the isolated perfused human liver. Hepatology 23:24–31PubMedCrossRefGoogle Scholar
  115. 115.
    Rosmorduc O, Wendum D, Corpechot C, Galy B, Sebbagh N, Raleigh J, Housset C et al (1999) Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol 155:1065–1073PubMedGoogle Scholar
  116. 116.
    Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C et al (2002) Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35:1010–1021PubMedCrossRefGoogle Scholar
  117. 117.
    Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, Wu Y et al (2003) Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 52:1347–1354PubMedCrossRefGoogle Scholar
  118. 118.
    Wang Y, Luk J, Ikeda K, Man K, Chu A, Kaneda K, Tat Fan S (2004) Regulatory role of vHL/HIF-1alpha in hypoxia-induced VEGF production in hepatic stellate cells. Biochem Biophys Res Commun 317:358–362PubMedCrossRefGoogle Scholar
  119. 119.
    Novo E, Cannito S, Zamara E, Valfre di Bonzo L, Caligiuri A, Cravanzola C, Compagnone A et al (2007) Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 170:1942–1953PubMedCrossRefGoogle Scholar
  120. 120.
    Deleve LD, Wang X, Guo Y (2008) Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48:920–930PubMedCrossRefGoogle Scholar
  121. 121.
    Bosch J, Pizcueta P, Feu F, Fernandez M, Garcia-Pagan JC (1992) Pathophysiology of portal hypertension. Gastroen­terol Clin North Am 21:1–14PubMedGoogle Scholar
  122. 122.
    Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J (2004) Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 126:886–894PubMedCrossRefGoogle Scholar
  123. 123.
    Tugues S, Fernandez-Varo G, Munoz-Luque J, Ros J, Arroyo V, Rodes J, Friedman SL et al (2007) Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 46:1919–1926PubMedCrossRefGoogle Scholar
  124. 124.
    Fernandez M, Mejias M, Garcia-Pras E, Mendez R, Garcia-Pagan JC, Bosch J (2007) Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 46:1208–1217PubMedCrossRefGoogle Scholar
  125. 125.
    Lee SW, Lee YM, Bae SK, Murakami S, Yun Y, Kim KW (2000) Human hepatitis B virus X protein is a possible mediator of hypoxia-induced angiogenesis in hepatocarcinogenesis. Biochem Biophys Res Commun 268: 456–461PubMedCrossRefGoogle Scholar
  126. 126.
    Yoo YG, Oh SH, Park ES, Cho H, Lee N, Park H, Kim DK et al (2003) Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1{alpha} through activation of mitogen-activated protein kinase pathway. J Biol Chem 278:39076–39084PubMedCrossRefGoogle Scholar
  127. 127.
    Moon E-J, Jeong C-H, Jeong J-W, Kim KR, Yu D-Y, Murakami S, Kim CW, et al (2004) Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1&alpha. FASEB J 18:382–4Google Scholar
  128. 128.
    Tao X, Shen D, Ren H, Zhang X, Zhang D, Ye J, Gu B (2000) Hepatitis B virus X protein activates expression of IGF-IR and VEGF in hepatocellular carcinoma cells. Zhonghua Gan Zang Bing Za Zhi 8:161–163PubMedGoogle Scholar
  129. 129.
    Yan J, Chen W, Ma Y, Sun X (2000) Expression of vascular endothelial growth factor in liver tissues of hepatitis B. Zhonghua Gan Zang Bing Za Zhi 8:150–152PubMedGoogle Scholar
  130. 130.
    Salcedo X, Medina J, Sanz-Cameno P, Garcia-Buey L, Martin-Vilchez S, Borque MJ, Lopez-Cabrera M et al (2005) The potential of angiogenesis soluble markers in chronic hepatitis C. Hepatology 42:696–701PubMedCrossRefGoogle Scholar
  131. 131.
    Medina J, Caveda L, Sanz-Cameno P, Arroyo AG, Martin-Vilchez S, Majano PL, Garcia-Buey L et al (2003) Hepatocyte growth factor activates endothelial proangiogenic mechanisms relevant in chronic hepatitis C-associated neoangiogenesis. J Hepatol 38:660–667PubMedCrossRefGoogle Scholar
  132. 132.
    Nasimuzzaman M, Waris G, Mikolon D, Stupack DG, Siddiqui A (2007) Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor. J Virol 81:10249–10257PubMedCrossRefGoogle Scholar
  133. 133.
    Liu C, Liu W, Yang J, Fang D (2001) HCV core protein activates expression of vascular endothelial growth factor in HepG(2) cells. Zhonghua Gan Zang Bing Za Zhi 9: 214–216PubMedGoogle Scholar
  134. 134.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  135. 135.
    Semenza GL (2003) Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med 54:17–28PubMedCrossRefGoogle Scholar
  136. 136.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  137. 137.
    Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725PubMedCrossRefGoogle Scholar
  138. 138.
    Jung JO, Gwak GY, Lim YS, Kim CY, Lee HS (2003) Role of hepatic stellate cells in the angiogenesis of hepatoma. Korean J Gastroenterol 42:142–148PubMedGoogle Scholar
  139. 139.
    Park YN, Kim YB, Yang KM, Park C (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 124:1061–1065PubMedGoogle Scholar
  140. 140.
    Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M (1998) Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 28:68–77PubMedCrossRefGoogle Scholar
  141. 141.
    Arii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, Mizumoto M et al (1996) Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. Hepatology 24:316–322PubMedCrossRefGoogle Scholar
  142. 142.
    Koga H, Sakisaka S, Ohishi M, Kawaguchi T, Taniguchi E, Sasatomi K, Harada M et al (1999) Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology 29:688–696PubMedCrossRefGoogle Scholar
  143. 143.
    Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, Christensen E et al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35:421–430PubMedCrossRefGoogle Scholar
  144. 144.
    Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, Huber J et al (2002) Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology 35: 834–842PubMedCrossRefGoogle Scholar
  145. 145.
    Yamaguchi R, Yano H, Nakashima Y, Ogasawara S, Higaki K, Akiba J, Hicklin DJ et al (2000) Expression and localization of vascular endothelial growth factor receptors in human hepatocellular carcinoma and non-HCC tissues. Oncol Rep 7:725–729PubMedGoogle Scholar
  146. 146.
    Mise M, Arii S, Higashituji H, Furutani M, Niwano M, Harada T, Ishigami S et al (1996) Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology 23:455–464PubMedCrossRefGoogle Scholar
  147. 147.
    Nakashima Y, Nakashima O, Hsia CC, Kojiro M, Tabor E (1999) Vascularization of small hepatocellular carcinomas: correlation with differentiation. Liver 19:12–18PubMedCrossRefGoogle Scholar
  148. 148.
    Miura H, Miyazaki T, Kuroda M, Oka T, Machinami R, Kodama T, Shibuya M et al (1997) Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma. J Hepatol 27:854–861PubMedCrossRefGoogle Scholar
  149. 149.
    Chow NH, Hsu PI, Lin XZ, Yang HB, Chan SH, Cheng KS, Huang SM et al (1997) Expression of vascular endothelial growth factor in normal liver and hepatocellular carcinoma: an immunohistochemical study. Hum Pathol 28: 698–703PubMedCrossRefGoogle Scholar
  150. 150.
    Chao Y, Li CP, Chau GY, Chen CP, King KL, Lui WY, Yen SH et al (2003) Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol 10:355–362PubMedCrossRefGoogle Scholar
  151. 151.
    Zhou XD (2002) Recurrence and metastasis of hepatocellular carcinoma: progress and prospects. Hepatobiliary Pancreat Dis Int 1:35–41PubMedGoogle Scholar
  152. 152.
    Marzullo A, Vacca A, Roncali L, Pollice L, Ribatti D (1998) Angiogenesis in hepatocellular carcinoma: an experimental study in the chick embryo chorioallantoic membrane. Int J Oncol 13:17–21PubMedGoogle Scholar
  153. 153.
    Poon RT-P, Lau CP-Y, Cheung S-T, Yu W-C, Fan S-T (2003) Quantitative correlation of serum levels and tumor expression of vascular endothelial growth factor in patients with hepatocellular carcinoma. Cancer Res 63:3121–3126PubMedGoogle Scholar
  154. 154.
    Jinno K, Tanimizu M, Hyodo I, Nishikawa Y, Hosokawa Y, Doi T, Endo H et al (1998) Circulating vascular endothelial growth factor (VEGF) is a possible tumor marker for metastasis in human hepatocellular carcinoma. J Gastroenterol 33:376–382PubMedCrossRefGoogle Scholar
  155. 155.
    Poon RT, Ng IO, Lau C, Zhu LX, Yu WC, Lo CM, Fan ST et al (2001) Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study. Ann Surg 233:227–235PubMedCrossRefGoogle Scholar
  156. 156.
    Kim SJ, Choi IK, Park KH, Yoon SY, Oh SC, Seo JH, Choi CW et al (2004) Serum vascular endothelial growth factor per platelet count in hepatocellular carcinoma: correlations with clinical parameters and survival. Jpn J Clin Oncol 34:184–190PubMedCrossRefGoogle Scholar
  157. 157.
    Poon R, Lau C, Yu W, Fan S, Wong J (2004) High serum levels of vascular endothelial growth factor predict poor response to transarterial chemoembolization in hepatocellular carcinoma: a prospective study. Oncol Rep 11: 1077–1084PubMedGoogle Scholar
  158. 158.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390PubMedCrossRefGoogle Scholar
  159. 159.
    Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48:1312–1327PubMedCrossRefGoogle Scholar
  160. 160.
    Liao X, Yi J, Li X, Yang Z, Deng W, Tian G (2003) Expression of angiogenic factors in hepatocellular carcinoma after transcatheter arterial chemoembolization. J Huazhong Univ Sci Technolog Med Sci 23:280–282PubMedCrossRefGoogle Scholar
  161. 161.
    Suzuki H, Mori M, Kawaguchi C, Adachi M, Miura S, Ishii H (1999) Serum vascular endothelial growth factor in the course of transcatheter arterial embolization of hepatocellular carcinoma. Int J Oncol 14:1087–1090PubMedGoogle Scholar
  162. 162.
    Li X, Feng G, Zheng C, Zhuo C, Liu X (2003) Influence of transarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma: An experimental study. World J Gastroenterol 9:2445–2449PubMedGoogle Scholar
  163. 163.
    Wu H, Feng G, Liang H, Zheng C, Li X (2004) Vascular endothelial growth factor antisense oligodeoxynucleotides with lipiodol in arterial embolization of liver cancer in rats. World J Gastroenterol 10:813–818PubMedGoogle Scholar
  164. 164.
    Strebel BM, Dufour JF (2008) Combined approach to hepatocellular carcinoma: a new treatment concept for nonresectable disease. Expert Rev Anticancer Ther 8:1743–1749PubMedCrossRefGoogle Scholar
  165. 165.
    Kraft A, Weindel K, Ochs A, Marth C, Zmija J, Schumacher P, Unger C et al (1999) Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 85:178–187PubMedCrossRefGoogle Scholar
  166. 166.
    Zebrowski BK, Liu W, Ramirez K, Akagi Y, Mills GB, Ellis LM (1999) Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol 6:373–378PubMedCrossRefGoogle Scholar
  167. 167.
    Verheul HMW, Hoekman K, Jorna AS, Smit EF, Pinedo HM (2000) Targeting vascular endothelial growth factor blockade: ascites and pleural effusion formation. Oncologist 5:45–50PubMedCrossRefGoogle Scholar
  168. 168.
    Dong W, Sun X, Yu B, Luo H, Yu J (2003) Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World J Gastroenterol 9:2596–2600PubMedGoogle Scholar
  169. 169.
    Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108(pt 6): 2369–2379PubMedGoogle Scholar
  170. 170.
    Roberts WG, Palade GE (1997) Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 57:765–772PubMedGoogle Scholar
  171. 171.
    Hirata A, Baluk P, Fujiwara T, McDonald DM (1995) Location of focal silver staining at endothelial gaps in inflamed venules examined by scanning electron microscopy. Am J Physiol 269:L403–L418Google Scholar
  172. 172.
    Neal CR, Michel CC (1995) Transcellular gaps in microvascular walls of frog and rat when permeability is increased by perfusion with the ionophore A23187. J Physiol 488(Pt 2):427–437PubMedGoogle Scholar
  173. 173.
    Kohn S, Nagy JA, Dvorak HF, Dvorak AM (1992) Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 67:596–607PubMedGoogle Scholar
  174. 174.
    Feng D, Nagy J, Dvorak A, Dvorak H (2000) Different pathways of macromolecule extravasation from hyperpermeable tumor vessels. Microvasc Res 59:24–37PubMedCrossRefGoogle Scholar
  175. 175.
    Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS (1999) Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 59:1592–1598PubMedGoogle Scholar
  176. 176.
    Funyu J, Mochida S, Inao M, Matsui A, Fujiwara K (2001) VEGF can act as vascular permeability factor in the hepatic sinusoids through upregulation of porosity of endothelial cells. Biochem Biophys Res Commun 280:481–485PubMedCrossRefGoogle Scholar
  177. 177.
    Yoshiji H, Kuriyama S, Hicklin D, Huber J, Yoshii J, Ikenaka Y, Noguchi R et al (2001) The vascular endothelial growth factor receptor KDR/Flk-1 is a major regulator of malignant ascites formation in the mouse hepatocellular carcinoma model. Hepatology 33:841–847PubMedCrossRefGoogle Scholar
  178. 178.
    Stoelcker B, Echtenacher B, Weich H, Sztajer H, Hicklin D, Mannel D (2000) VEGF/Flk-1 interaction, a requirement for malignant ascites recurrence. J Interferon Cytokine Res 20:511–517PubMedCrossRefGoogle Scholar
  179. 179.
    Shibuya M, Luo J, Toyoda M, Yamaguchi S (1999) Involvement of VEGF and its receptors in ascites tumor formation. Cancer Chemother Pharmacol 43 Suppl:S72–S77Google Scholar
  180. 180.
    Mesiano S, Ferrara N, Jaffe RB (1998) Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol 153:1249–1256PubMedGoogle Scholar
  181. 181.
    Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD et al (2003) Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res 9:5721–5728PubMedGoogle Scholar
  182. 182.
    Xu L, Yoneda J, Herrera C, Wood J, Killion J, Fidler I (2000) Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int J Oncol 16:445–454PubMedGoogle Scholar
  183. 183.
    Melgar-Lesmes P, Tugues S, Ros J, Fernandez-Varo G, Morales-Ruiz M, Rodes J, Jimenez W (2009) Vascular endothelial growth factor and angiopoietin-2 play a major role in the pathogenesis of vascular leakage in cirrhotic rats. Gut 58:285–292PubMedCrossRefGoogle Scholar
  184. 184.
    Perez-Ruiz M, Ros J, Morales-Ruiz M, Navasa M, Colmenero J, Ruiz-del-Arbol L, Cejudo P et al (1999) Vascular endothelial growth factor production in peritoneal macrophages of cirrhotic patients: regulation by cytokines and bacterial lipopolysaccharide. Hepatology 29: 1057–1063PubMedCrossRefGoogle Scholar
  185. 185.
    Arai S, Mochida S, Ohno A, Ishikawa K, Matsui A, Arai M, Shibuya M et al (1999) Decreased expression of receptors for vascular endothelial growth factor and sinusoidal endothelial cell damage in cold-preserved rat livers. Transplant Proc 31:2668–2672PubMedCrossRefGoogle Scholar
  186. 186.
    Boros P, Tarcsafalvi A, Wang L, Megyesi J, Liu J, Miller CM (2001) Intrahepatic expression and release of vascular endothelial growth factor following orthotopic liver transplantation in the rat. Transplantation 72:805–811PubMedCrossRefGoogle Scholar
  187. 187.
    Mitchell A, Adams LA, MacQuillan G, Tibballs J, Vanden Driesen R, Delriviere L (2008) Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl 14:210–213PubMedCrossRefGoogle Scholar
  188. 188.
    Cho ML, Cho CS, Min SY, Kim SH, Lee SS, Kim WU, Min DJ et al (2002) Cyclosporine inhibition of vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Arthritis Rheum 46:1202–1209PubMedCrossRefGoogle Scholar
  189. 189.
    Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135PubMedCrossRefGoogle Scholar
  190. 190.
    Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M (2003) Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int 63: 917–926PubMedCrossRefGoogle Scholar
  191. 191.
    Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560PubMedCrossRefGoogle Scholar
  192. 192.
    Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8: 579–591PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Clinical Pharmacology and Visceral ResearchUniversity of BernBernSwitzerland

Personalised recommendations