The WNT/β-Catenin Pathway

  • Satdarshan P. S. MongaEmail author


Genetic studies in species such as Xenopus, Drosophila, and Caenorhabditis have lent themselves quite well to further our understanding of the molecular basis of human diseases. A classical example is the identification and characterization of the Wnt/β-catenin pathway that is crucial in normal development including embryogenesis, organogenesis, and epithelial-mesenchymal transition and at the same time its deregulation is implicated in disorders such as cancers (reviewed in [1–3]). This pathway has remained conserved through the evolutionary process. In Drosophila, the role of Wnt or Wingless (Wg) was initially identified in normal wing development, however, it was later recognized for multiple functions such as inducing segment polarity and anterior–posterior patterning that were imperative for a viable embryo [4–6]. As the importance of Wnt emerged, several key components of this pathway were identified. The discovery of armadillo (or β-catenin) added a significant player to this orchestra and although circumstantial evidence suggesting such a relationship existed earlier it was a few years later that β-catenin was positively identified as a central component of the canonical Wg pathway [5, 7–9]. These studies led to the emergence of a model system for cell adhesion and signal transduction [10]. This was also the beginning of the understanding of the Wnt/β-catenin pathway and its role in complex cellular processes such as cell–cell adhesion, mitogenesis, motogenesis, and morphogenesis in the vertebrates.


Idiopathic Pulmonary Fibrosis Primary Biliary Cirrhosis Focal Nodular Hyperplasia Liver Development Ctnnb1 Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arias AM (2001) Epithelial mesenchymal interactions in cancer and development. Cell 105:425–431PubMedCrossRefGoogle Scholar
  2. 2.
    Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646PubMedCrossRefGoogle Scholar
  3. 3.
    Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science 287: 1606–1609PubMedCrossRefGoogle Scholar
  4. 4.
    Babu P (1977) Early developmental subdivisions of the wing disk in Drosophila. Mol Gen Genet 151:289–294PubMedCrossRefGoogle Scholar
  5. 5.
    Perrimon N, Mahowald AP (1987) Multiple functions of segment polarity genes in Drosophila. Dev Biol 119: 587–600PubMedCrossRefGoogle Scholar
  6. 6.
    Sharma RP, Chopra VL (1976) Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 48:461–465PubMedCrossRefGoogle Scholar
  7. 7.
    Patel NH, Schafer B, Goodman CS, Holmgren R (1989) The role of segment polarity genes during Drosophila neurogenesis. Genes Dev 3:890–904PubMedCrossRefGoogle Scholar
  8. 8.
    Peifer M, Rauskolb C, Williams M, Riggleman B, Wieschaus E (1991) The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation. Development 111:1029–1043PubMedGoogle Scholar
  9. 9.
    Riggleman B, Schedl P, Wieschaus E (1990) Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell 63:549–560PubMedCrossRefGoogle Scholar
  10. 10.
    Peifer M, Orsulic S, Pai LM, Loureiro J (1993) A model system for cell adhesion and signal transduction in Drosophila. Dev Suppl:163–176Google Scholar
  11. 11.
    Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230PubMedCrossRefGoogle Scholar
  12. 12.
    Hamada F, Tomoyasu Y, Takatsu Y, Nakamura M, Nagai S, Suzuki A, Fujita F, Shibuya H, Toyoshima K, Ueno N, Akiyama T (1999) Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science 283: 1739–1742PubMedCrossRefGoogle Scholar
  13. 13.
    Klingensmith J, Nusse R, Perrimon N (1994) The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev 8: 118–130PubMedCrossRefGoogle Scholar
  14. 14.
    Noordermeer J, Klingensmith J, Perrimon N, Nusse R (1994) Dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 367:80–83PubMedCrossRefGoogle Scholar
  15. 15.
    Peifer M, Sweeton D, Casey M, Wieschaus E (1994) Wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120:369–380PubMedGoogle Scholar
  16. 16.
    Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H (1999) Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 285:1923–1926PubMedCrossRefGoogle Scholar
  17. 17.
    Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026PubMedCrossRefGoogle Scholar
  18. 18.
    Siegfried E, Chou TB, Perrimon N (1992) wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71:1167–1179PubMedCrossRefGoogle Scholar
  19. 19.
    De Strooper B, Annaert W (2001) Where Notch and Wnt signaling meet. The presenilin hub. J Cell Biol 152:F17–F20CrossRefGoogle Scholar
  20. 20.
    Hiscox S, Jiang WG (1999) Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem Biophys Res Commun 261:406–411PubMedCrossRefGoogle Scholar
  21. 21.
    Hoschuetzky H, Aberle H, Kemler R (1994) Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127:1375–1380PubMedCrossRefGoogle Scholar
  22. 22.
    Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, Wang X, Zarnegar R, Michalopoulos GK (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071PubMedGoogle Scholar
  23. 23.
    Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature 403:781–785PubMedCrossRefGoogle Scholar
  24. 24.
    Papkoff J, Aikawa M (1998) WNT-1 and HGF regulate GSK3 beta activity and beta-catenin signaling in mammary epithelial cells. Biochem Biophys Res Commun 247:851–858PubMedCrossRefGoogle Scholar
  25. 25.
    Zorn AM, Butler K, Gurdon JB (1999) Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev Biol 209:282–297PubMedCrossRefGoogle Scholar
  26. 26.
    Pennisi E (1998) How a growth control path takes a wrong turn to cancer. Science 281:1438–1439, 1441PubMedCrossRefGoogle Scholar
  27. 27.
    Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121:3529–3537PubMedGoogle Scholar
  28. 28.
    Huelsken J, Birchmeier W (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11:547–553PubMedCrossRefGoogle Scholar
  29. 29.
    Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148: 567–578PubMedCrossRefGoogle Scholar
  30. 30.
    Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP, Sommer L, Boussadia O, Kemler R (2001) Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128:1253–1264PubMedGoogle Scholar
  31. 31.
    Hari L, Brault V, Kleber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R, Sommer L (2002) Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 159:867–880PubMedCrossRefGoogle Scholar
  32. 32.
    Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545PubMedCrossRefGoogle Scholar
  33. 33.
    Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125: 4225–4234PubMedGoogle Scholar
  34. 34.
    Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R (2002) Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 3:171–181PubMedCrossRefGoogle Scholar
  35. 35.
    Mucenski ML, Wert SE, Nation JM, Loudy DE, Huelsken J, Birchmeier W, Morrisey EE, Whitsett JA (2003) beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 278: 40231–40238PubMedCrossRefGoogle Scholar
  36. 36.
    Constantinescu S (2003) Stemness, fusion and renewal of hematopoietic and embryonic stem cells. J Cell Mol Med 7:103–112PubMedCrossRefGoogle Scholar
  37. 37.
    Fuchs E (1998) Beauty is skin deep: the fascinating biology of the epidermis and its appendages. Harvey Lect 94:47–77PubMedGoogle Scholar
  38. 38.
    Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383PubMedCrossRefGoogle Scholar
  39. 39.
    Lickert H, Domon C, Huls G, Wehrle C, Duluc I, Clevers H, Meyer BI, Freund JN, Kemler R (2000) Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127:3805–3813PubMedGoogle Scholar
  40. 40.
    Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414PubMedCrossRefGoogle Scholar
  41. 41.
    Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, Bianco P, Wolburg H, Moore R, Oreda B, Kemler R, Dejana E (2003) The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162: 1111–1122PubMedCrossRefGoogle Scholar
  42. 42.
    Goodwin AM, D’Amore PA (2002) Wnt signaling in the vasculature. Angiogenesis 5:1–9PubMedCrossRefGoogle Scholar
  43. 43.
    Nagashima H, Okada M, Hidai C, Hosoda S, Kasanuki H, Kawana M (1997) The role of cadherin-catenin-cytoskeleton complex in angiogenesis: antisense oligonucleotide of plakoglobin promotes angiogenesis in vitro, and protein kinase C (PKC) enhances angiogenesis through the plakoglobin signaling pathway. Heart Vessels Suppl 12:110–112Google Scholar
  44. 44.
    Venkiteswaran K, Xiao K, Summers S, Calkins CC, Vincent PA, Pumiglia K, Kowalczyk AP (2002) Regulation of endothelial barrier function and growth by VE-cadherin, plakoglobin, and beta-catenin. Am J Physiol Cell Physiol 283:C811–C821Google Scholar
  45. 45.
    Barker N, Morin PJ, Clevers H (2000) The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77:1–24PubMedCrossRefGoogle Scholar
  46. 46.
    van Amerongen R, Mikels A, Nusse R (2008) Alternative wnt signaling is initiated by distinct receptors. Sci Signal 1:re9Google Scholar
  47. 47.
    Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I (2002) Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16:1066–1076PubMedCrossRefGoogle Scholar
  48. 48.
    Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280:596–599PubMedCrossRefGoogle Scholar
  49. 49.
    Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847PubMedCrossRefGoogle Scholar
  50. 50.
    Yanagawa S, Matsuda Y, Lee JS, Matsubayashi H, Sese S, Kadowaki T, Ishimoto A (2002) Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. Embo J 21:1733–1742PubMedCrossRefGoogle Scholar
  51. 51.
    Itoh K, Krupnik VE, Sokol SY (1998) Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol 8:591–594PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K, Akiyama T (1998) Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells 3:395–403PubMedCrossRefGoogle Scholar
  53. 53.
    Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 16:3797–3804PubMedCrossRefGoogle Scholar
  54. 54.
    Rattner A, Hsieh JC, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1997) A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A 94: 2859–2863PubMedCrossRefGoogle Scholar
  55. 55.
    Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398:431–436PubMedCrossRefGoogle Scholar
  56. 56.
    Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710PubMedCrossRefGoogle Scholar
  57. 57.
    Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–538PubMedCrossRefGoogle Scholar
  58. 58.
    Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535PubMedCrossRefGoogle Scholar
  59. 59.
    Wehrli M, Dougan ST, Caldwell K, O’Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S (2000) Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–530PubMedCrossRefGoogle Scholar
  60. 60.
    Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11:951–961PubMedCrossRefGoogle Scholar
  61. 61.
    Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. Embo J 18:4233–4240PubMedCrossRefGoogle Scholar
  62. 62.
    Salic A, Lee E, Mayer L, Kirschner MW (2000) Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 5: 523–532PubMedCrossRefGoogle Scholar
  63. 63.
    Strovel ET, Wu D, Sussman DJ (2000) Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 275:2399–2403PubMedCrossRefGoogle Scholar
  64. 64.
    Sun TQ, Lu B, Feng JJ, Reinhard C, Jan YN, Fantl WJ, Williams LT (2001) PAR-1 is a Dishevelled-associated kinase and a positive­ regulator of Wnt signalling. Nat Cell Biol 3:628–636PubMedCrossRefGoogle Scholar
  65. 65.
    Dominguez I, Mizuno J, Wu H, Song DH, Symes K, Seldin DC (2004) Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos. Dev Biol 274:110–124PubMedCrossRefGoogle Scholar
  66. 66.
    Peters JM, McKay RM, McKay JP, Graff JM (1999) Casein kinase I transduces Wnt signals. Nature 401:345–350PubMedCrossRefGoogle Scholar
  67. 67.
    Sakanaka C, Leong P, Xu L, Harrison SD, Williams LT (1999) Casein kinase iepsilon in the wnt pathway: regulation of beta-catenin function. Proc Natl Acad Sci U S A 96: 12548–12552PubMedCrossRefGoogle Scholar
  68. 68.
    Song DH, Dominguez I, Mizuno J, Kaut M, Mohr SC, Seldin DC (2003) CK2 phosphorylation of the armadillo repeat region of beta-catenin potentiates Wnt signaling. J Biol Chem 278:24018–24025PubMedCrossRefGoogle Scholar
  69. 69.
    Willert K, Brink M, Wodarz A, Varmus H, Nusse R (1997) Casein kinase 2 associates with and phosphorylates dishevelled. Embo J 16:3089–3096PubMedCrossRefGoogle Scholar
  70. 70.
    Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11:2359–2370PubMedCrossRefGoogle Scholar
  71. 71.
    Riese J, Yu X, Munnerlyn A, Eresh S, Hsu SC, Grosschedl R, Bienz M (1997) LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88: 777–787PubMedCrossRefGoogle Scholar
  72. 72.
    Stadeli R, Hoffmans R, Basler K (2006) Transcription under the control of nuclear Arm/beta-catenin. Curr Biol 16:R378–R385CrossRefGoogle Scholar
  73. 73.
    Bienz M (1998) TCF: transcriptional activator or repressor? Curr Opin Cell Biol 10:366–372PubMedCrossRefGoogle Scholar
  74. 74.
    Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395:604–608PubMedCrossRefGoogle Scholar
  75. 75.
    Chen G, Fernandez J, Mische S, Courey AJ (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13:2218–2230PubMedCrossRefGoogle Scholar
  76. 76.
    Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Zullig S, Basler K (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109:47–60PubMedCrossRefGoogle Scholar
  77. 77.
    Parker DS, Jemison J, Cadigan KM (2002) Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129:2565–2576PubMedGoogle Scholar
  78. 78.
    Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. Embo J 20:4935–4943PubMedCrossRefGoogle Scholar
  79. 79.
    Waltzer L, Bienz M (1998) Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395:521–525PubMedCrossRefGoogle Scholar
  80. 80.
    Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. Embo J 19:1839–1850PubMedCrossRefGoogle Scholar
  81. 81.
    Takemaru KI, Moon RT (2000) The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 149:249–254PubMedCrossRefGoogle Scholar
  82. 82.
    Ma H, Nguyen C, Lee KS, Kahn M (2005) Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene 24:3619–3631PubMedCrossRefGoogle Scholar
  83. 83.
    Bauer A, Chauvet S, Huber O, Usseglio F, Rothbacher U, Aragnol D, Kemler R, Pradel J (2000) Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. Embo J 19:6121–6130PubMedCrossRefGoogle Scholar
  84. 84.
    Bauer A, Huber O, Kemler R (1998) Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci U S A 95:14787–14792PubMedCrossRefGoogle Scholar
  85. 85.
    Takemaru K, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT (2003) Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 422: 905–909PubMedCrossRefGoogle Scholar
  86. 86.
    Ault KT, Durmowicz G, Galione A, Harger PL, Busa WB (1996) Modulation of Xenopus embryo mesoderm-specific gene expression and dorsoanterior patterning by receptors that activate the phosphatidylinositol cycle signal transduction pathway. Development 122:2033–2041PubMedGoogle Scholar
  87. 87.
    Slusarski DC, Yang-Snyder J, Busa WB, Moon RT (1997) Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev Biol 182:114–120PubMedCrossRefGoogle Scholar
  88. 88.
    Slusarski DC, Corces VG, Moon RT (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413PubMedCrossRefGoogle Scholar
  89. 89.
    Yang-Snyder J, Miller JR, Brown JD, Lai CJ, Moon RT (1996) A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 6:1302–1306PubMedCrossRefGoogle Scholar
  90. 90.
    Kuhl M, Sheldahl LC, Malbon CC, Moon RT (2000) Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 275:12701–12711PubMedCrossRefGoogle Scholar
  91. 91.
    Sheldahl LC, Park M, Malbon CC, Moon RT (1999) Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 9: 695–698PubMedCrossRefGoogle Scholar
  92. 92.
    Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16: 279–283PubMedCrossRefGoogle Scholar
  93. 93.
    Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K (2002) The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417: 295–299PubMedCrossRefGoogle Scholar
  94. 94.
    Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-­independent Wnt signaling. Dev Cell 5:367–377Google Scholar
  95. 95.
    Peifer M, McEwen DG (2002) The ballet of morphogenesis: unveiling the hidden choreographers. Cell 109:271–274PubMedCrossRefGoogle Scholar
  96. 96.
    Tree DR, Shulman JM, Rousset R, Scott MP, Gubb D, Axelrod JD (2002) Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109:371–381PubMedCrossRefGoogle Scholar
  97. 97.
    Axelrod JD (2002) Strabismus comes into focus. Nat Cell Biol 4:E6–E8CrossRefGoogle Scholar
  98. 98.
    Adler PN, Lee H (2001) Frizzled signaling and cell-cell interactions in planar polarity. Curr Opin Cell Biol 13: 635–640PubMedCrossRefGoogle Scholar
  99. 99.
    Boutros M, Paricio N, Strutt DI, Mlodzik M (1998) Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94:109–118PubMedCrossRefGoogle Scholar
  100. 100.
    Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17:295–309PubMedCrossRefGoogle Scholar
  101. 101.
    Marlow F, Topczewski J, Sepich D, Solnica-Krezel L (2002) Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol 12:876–884PubMedCrossRefGoogle Scholar
  102. 102.
    Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15:1796–1807PubMedCrossRefGoogle Scholar
  103. 103.
    Wunnenberg-Stapleton K, Blitz IL, Hashimoto C, Cho KW (1999) Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 126:5339–5351PubMedGoogle Scholar
  104. 104.
    Zhang Y, Neo SY, Han J, Lin SC (2000) Dimerization choices control the ability of axin and dishevelled to ­activate c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 275:25008–25014PubMedCrossRefGoogle Scholar
  105. 105.
    Meneghini MD, Ishitani T, Carter JC, Hisamoto N, Ninomiya-Tsuji J, Thorpe CJ, Hamill DR, Matsumoto K, Bowerman B (1999) MAP kinase and Wnt pathways ­converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399:793–797PubMedCrossRefGoogle Scholar
  106. 106.
    Mihaly J, Kockel L, Gaengel K, Weber U, Bohmann D, Mlodzik M (2001) The role of the Drosophila TAK homologue dTAK during development. Mech Dev 102:67–79PubMedCrossRefGoogle Scholar
  107. 107.
    Mirkovic I, Charish K, Gorski SM, McKnight K, Verheyen EM (2002) Drosophila nemo is an essential gene involved in the regulation of programmed cell death. Mech Dev 119: 9–20PubMedCrossRefGoogle Scholar
  108. 108.
    Park M, Moon RT (2002) The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat Cell Biol 4:20–25PubMedCrossRefGoogle Scholar
  109. 109.
    Shimada Y, Usui T, Yanagawa S, Takeichi M, Uemura T (2001) Asymmetric colocalization of Flamingo, a seven-pass transmembrane cadherin, and Dishevelled in planar cell polarization. Curr Biol 11:859–863PubMedCrossRefGoogle Scholar
  110. 110.
    Topczewski J, Sepich DS, Myers DC, Walker C, Amores A, Lele Z, Hammerschmidt M, Postlethwait J, Solnica-Krezel L (2001) The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 1:251–264PubMedCrossRefGoogle Scholar
  111. 111.
    Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854PubMedCrossRefGoogle Scholar
  112. 112.
    Rousset R, Mack JA, Wharton KA Jr, Axelrod JD, Cadigan KM, Fish MP, Nusse R, Scott MP (2001) Naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes Dev 15:658–671PubMedCrossRefGoogle Scholar
  113. 113.
    Yang CH, Axelrod JD, Simon MA (2002) Regulation of Frizzled by fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell 108:675–688PubMedCrossRefGoogle Scholar
  114. 114.
    Knudsen KA, Soler AP, Johnson KR, Wheelock MJ (1995) Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 130: 67–77PubMedCrossRefGoogle Scholar
  115. 115.
    Nieset JE, Redfield AR, Jin F, Knudsen KA, Johnson KR, Wheelock MJ (1997) Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. J Cell Sci 110(Pt 8):1013–1022PubMedGoogle Scholar
  116. 116.
    Wheelock MJ, Knudsen KA (1991) Cadherins and associated proteins. In Vivo 5:505–513PubMedGoogle Scholar
  117. 117.
    Korswagen HC, Herman MA, Clevers HC (2000) Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 406:527–532PubMedCrossRefGoogle Scholar
  118. 118.
    Micsenyi A, Tan X, Sneddon T, Luo JH, Michalopoulos GK, Monga SP (2004) Beta-catenin is temporally regulated during normal liver development. Gastroenterology 126:1134–1146PubMedCrossRefGoogle Scholar
  119. 119.
    Huber AH, Weis WI (2001) The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105:391–402PubMedCrossRefGoogle Scholar
  120. 120.
    Jou TS, Stewart DB, Stappert J, Nelson WJ, Marrs JA (1995) Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. Proc Natl Acad Sci USA 92:5067–5071PubMedCrossRefGoogle Scholar
  121. 121.
    Lilien J, Balsamo J, Arregui C, Xu G (2002) Turn-off, drop-out: functional state switching of cadherins. Dev Dyn 224:18–29PubMedCrossRefGoogle Scholar
  122. 122.
    Ozawa M, Kemler R (1998) Altered cell adhesion activity by pervanadate due to the dissociation of alpha-catenin from the E-cadherin–catenin complex. J Biol Chem 273: 6166–6170PubMedCrossRefGoogle Scholar
  123. 123.
    Roura S, Miravet S, Piedra J, Garcia De Herreros A, Dunach M (1999) Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J Biol Chem 274: 36734–36740PubMedCrossRefGoogle Scholar
  124. 124.
    Hu P, O’Keefe EJ, Rubenstein DS (2001) Tyrosine phosphorylation of human keratinocyte beta-catenin and plakoglobin reversibly regulates their binding to E-cadherin and alpha-catenin. J Invest Dermatol 117:1059–1067PubMedCrossRefGoogle Scholar
  125. 125.
    Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG (2001) Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 276:20436–20443PubMedCrossRefGoogle Scholar
  126. 126.
    Meigs TE, Fedor-Chaiken M, Kaplan DD, Brackenbury R, Casey PJ (2002) Galpha12 and Galpha13 negatively regulate the adhesive functions of cadherin. J Biol Chem 277:24594–24600PubMedCrossRefGoogle Scholar
  127. 127.
    Meigs TE, Fields TA, McKee DD, Casey PJ (2001) Interaction of Galpha 12 and Galpha 13 with the cytoplasmic domain of cadherin provides a mechanism for beta -catenin release. Proc Natl Acad Sci U S A 98:519–524PubMedCrossRefGoogle Scholar
  128. 128.
    Balsamo J, Leung T, Ernst H, Zanin MK, Hoffman S, Lilien J (1996) Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J Cell Biol 134: 801–813PubMedCrossRefGoogle Scholar
  129. 129.
    Xu G, Arregui C, Lilien J, Balsamo J (2002) PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J Biol Chem 277:49989–49997PubMedCrossRefGoogle Scholar
  130. 130.
    Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W (1993) Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 120:757–766PubMedCrossRefGoogle Scholar
  131. 131.
    Rosato R, Veltmaat JM, Groffen J, Heisterkamp N (1998) Involvement of the tyrosine kinase fer in cell adhesion. Mol Cell Biol 18:5762–5770PubMedGoogle Scholar
  132. 132.
    Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925PubMedCrossRefGoogle Scholar
  133. 133.
    Kanai Y, Ochiai A, Shibata T, Oyama T, Ushijima S, Akimoto S, Hirohashi S (1995) c-erbB-2 gene product directly associates with beta-catenin and plakoglobin. Biochem Biophys Res Commun 208:1067–1072PubMedCrossRefGoogle Scholar
  134. 134.
    Shibamoto S, Hayakawa M, Takeuchi K, Hori T, Oku N, Miyazawa K, Kitamura N, Takeichi M, Ito F (1994) Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun 1:295–305PubMedCrossRefGoogle Scholar
  135. 135.
    Takahashi K, Suzuki K, Tsukatani Y (1997) Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence. Oncogene 15:71–78PubMedCrossRefGoogle Scholar
  136. 136.
    Brady-Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H, Brackenbury R, Rimm DL, Del Vecchio RL, Tonks NK (1998) Dynamic interaction of PTPmu with multiple cadherins in vivo. J Cell Biol 141:287–296PubMedCrossRefGoogle Scholar
  137. 137.
    Brady-Kalnay SM, Rimm DL, Tonks NK (1995) Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J Cell Biol 130:977–986PubMedCrossRefGoogle Scholar
  138. 138.
    Fuchs M, Muller T, Lerch MM, Ullrich A (1996) Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 271: 16712–16719PubMedCrossRefGoogle Scholar
  139. 139.
    Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A 97:2603–2608PubMedCrossRefGoogle Scholar
  140. 140.
    Muller T, Choidas A, Reichmann E, Ullrich A (1999) Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem 274:10173–10183PubMedCrossRefGoogle Scholar
  141. 141.
    Zeng G, Apte U, Micsenyi A, Bell A, Monga SP (2006) Tyrosine residues 654 and 670 in beta-catenin are crucial in regulation of Met-beta-catenin interactions. Exp Cell Res 312:3620–3630PubMedCrossRefGoogle Scholar
  142. 142.
    Danilkovitch-Miagkova A, Miagkov A, Skeel A, Nakaigawa N, Zbar B, Leonard EJ (2001) Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the beta-catenin pathway. Mol Cell Biol 21:5857–5868PubMedCrossRefGoogle Scholar
  143. 143.
    Shiota G, Umeki K, Okano J, Kawasaki H (1995) Hepatocyte growth factor and acute phase proteins in patients with chronic liver diseases. J Med 26:295–308PubMedGoogle Scholar
  144. 144.
    Yamagami H, Moriyama M, Tanaka N, Arakawa Y (2001) Detection of serum and intrahepatic human hepatocyte growth factor in patients with type C liver diseases. Intervirology 44:36–42PubMedCrossRefGoogle Scholar
  145. 145.
    Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J, Garcia De Herreros A, Dunach M, Neckers LM (2001) Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription. Cancer Res 61: 1671–1677PubMedGoogle Scholar
  146. 146.
    Michalopoulos G (1991) Control of hepatocyte proliferation in regeneration, augmentative hepatomegaly, and neoplasia. Prog Clin Biol Res 369:227–236PubMedGoogle Scholar
  147. 147.
    Michalopoulos GK (1994) Control mechanisms of liver regeneration. J Gastroenterol 29(Suppl 7):23–29PubMedGoogle Scholar
  148. 148.
    Stolz DB, Michalopoulos GK (1998) Differential modulation of hepatocyte growth factor-stimulated motility by transforming growth factor beta1 on rat liver epithelial cells in vitro. J Cell Physiol 175:30–40PubMedCrossRefGoogle Scholar
  149. 149.
    Weinstein M, Monga SP, Liu Y, Brodie SG, Tang Y, Li C, Mishra L, Deng CX (2001) Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Mol Cell Biol 21:5122–5131PubMedCrossRefGoogle Scholar
  150. 150.
    Grigoryan T, Wend P, Klaus A, Birchmeier W (2008) Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22:2308–2341PubMedCrossRefGoogle Scholar
  151. 151.
    Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK (2003) Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 124: 202–216PubMedCrossRefGoogle Scholar
  152. 152.
    Nejak-Bowen K, Monga SP (2008) Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis 4:92–99PubMedCrossRefGoogle Scholar
  153. 153.
    McLin VA, Rankin SA, Zorn AM (2007) Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 134:2207–2217PubMedCrossRefGoogle Scholar
  154. 154.
    Finley KR, Tennessen J, Shawlot W (2003) The mouse secreted frizzled-related protein 5 gene is expressed in the anterior visceral endoderm and foregut endoderm during early post-implantation development. Gene Expr Patterns 3:681–684PubMedCrossRefGoogle Scholar
  155. 155.
    Pilcher KE, Krieg PA (2002) Expression of the Wnt inhibitor, sFRP5, in the gut endoderm of Xenopus. Gene Expr Patterns 2:369–372PubMedCrossRefGoogle Scholar
  156. 156.
    Ober EA, Verkade H, Field HA, Stainier DY (2006) Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442:688–691PubMedCrossRefGoogle Scholar
  157. 157.
    Suksaweang S, Lin CM, Jiang TX, Hughes MW, Widelitz RB, Chuong CM (2004) Morphogenesis of chicken liver: identification of localized growth zones and the role of beta-catenin/Wnt in size regulation. Dev Biol 266:109–122PubMedCrossRefGoogle Scholar
  158. 158.
    Monga SP, Hout MS, Baun MJ, Micsenyi A, Muller P, Tummalapalli L, Ranade AR, Luo JH, Strom SC, Gerlach JC (2005) Mouse fetal liver cells in artificial capillary beds in three-dimensional four-compartment bioreactors. Am J Pathol 167:1279–1292PubMedGoogle Scholar
  159. 159.
    Tan X, Yuan Y, Zeng G, Apte U, Thompson MD, Cieply B, Stolz DB, Michalopoulos GK, Kaestner KH, Monga SP (2008) Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 47:1667–1679PubMedCrossRefGoogle Scholar
  160. 160.
    Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86–90PubMedCrossRefGoogle Scholar
  161. 161.
    Decaens T, Godard C, de Reynies A, Rickman DS, Tronche F, Couty JP, Perret C, Colnot S (2008) Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47:247–258PubMedCrossRefGoogle Scholar
  162. 162.
    Hussain SZ, Sneddon T, Tan X, Micsenyi A, Michalopoulos GK, Monga SP (2004) Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res 292:157–169PubMedCrossRefGoogle Scholar
  163. 163.
    Monga SP, Micsenyi A, Germinaro M, Apte U, Bell A (2006) beta-Catenin regulation during matrigel-induced rat hepatocyte differentiation. Cell Tissue Res 323:71–79PubMedCrossRefGoogle Scholar
  164. 164.
    Goessling W, North TE, Lord AM, Ceol C, Lee S, Weidinger G, Bourque C, Strijbosch R, Haramis AP, Puder M, Clevers H, Moon RT, Zon LI (2008) APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev Biol 320:161–174PubMedCrossRefGoogle Scholar
  165. 165.
    Matsumoto K, Miki R, Nakayama M, Tatsumi N, Yokouchi Y (2008) Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium. Dev Biol 319:234–247PubMedCrossRefGoogle Scholar
  166. 166.
    Apte U, Zeng G, Muller P, Tan X, Micsenyi A, Cieply B, Dai C, Liu Y, Kaestner KH, Monga SP (2006) Activation of Wnt/beta-catenin pathway during hepatocyte growth factor-induced hepatomegaly in mice. Hepatology 44:992–1002PubMedCrossRefGoogle Scholar
  167. 167.
    Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373:699–702PubMedCrossRefGoogle Scholar
  168. 168.
    Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373:702–705PubMedCrossRefGoogle Scholar
  169. 169.
    Berg T, Rountree CB, Lee L, Estrada J, Sala FG, Choe A, Veltmaat JM, De Langhe S, Lee R, Tsukamoto H, Crooks GM, Bellusci S, Wang KS (2007) Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via beta-catenin activation. Hepatology 46:1187–1197PubMedCrossRefGoogle Scholar
  170. 170.
    Sekhon SS, Tan X, Micsenyi A, Bowen WC, Monga SP (2004) Fibroblast growth factor enriches the embryonic liver cultures for hepatic progenitors. Am J Pathol 164: 2229–2240PubMedGoogle Scholar
  171. 171.
    Zeng G, Awan F, Otruba W, Muller P, Apte U, Tan X, Gandhi C, Demetris AJ, Monga SP (2007) Wnt’er in liver: expression of Wnt and frizzled genes in mouse. Hepatology 45:195–204PubMedCrossRefGoogle Scholar
  172. 172.
    Apte U, Zeng G, Thompson MD, Muller P, Micsenyi A, Cieply B, Kaestner KH, Monga SP (2007) Beta-catenin is critical for early postnatal liver growth. Am J Physiol Gastrointest Liver Physiol 292:G1578–G1585CrossRefGoogle Scholar
  173. 173.
    Cadoret A, Ovejero C, Saadi-Kheddouci S, Souil E, Fabre M, Romagnolo B, Kahn A, Perret C (2001) Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res 61:3245–3249PubMedGoogle Scholar
  174. 174.
    Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Perret C (2004) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A 101:17216–17221PubMedCrossRefGoogle Scholar
  175. 175.
    Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y, Oshima M, Taketo MM (2002) Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res 62: 1971–1977PubMedGoogle Scholar
  176. 176.
    Tan X, Apte U, Micsenyi A, Kotsagrelos E, Luo JH, Ranganathan S, Monga DK, Bell A, Michalopoulos GK, Monga SP (2005) Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 129:285–302PubMedCrossRefGoogle Scholar
  177. 177.
    Sekine S, Gutierrez PJ, Lan BY, Feng S, Hebrok M (2007) Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 45:361–368PubMedCrossRefGoogle Scholar
  178. 178.
    Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M (2006) Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43:817–825PubMedCrossRefGoogle Scholar
  179. 179.
    Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP (2006) Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology 131: 1561–1572PubMedCrossRefGoogle Scholar
  180. 180.
    Cadoret A, Ovejero C, Terris B, Souil E, Levy L, Lamers WH, Kitajewski J, Kahn A, Perret C (2002) New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21:8293–8301PubMedCrossRefGoogle Scholar
  181. 181.
    Loeppen S, Schneider D, Gaunitz F, Gebhardt R, Kurek R, Buchmann A, Schwarz M (2002) Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Cancer Res 62:5685–5688PubMedGoogle Scholar
  182. 182.
    Loeppen S, Koehle C, Buchmann A, Schwarz M (2005) A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis 26:239–248PubMedCrossRefGoogle Scholar
  183. 183.
    Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, Vasseur-Cognet M, Kuo CJ, Kahn A, Perret C, Colnot S (2006) Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell 10:759–770PubMedCrossRefGoogle Scholar
  184. 184.
    Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213:286–300PubMedCrossRefGoogle Scholar
  185. 185.
    Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66PubMedCrossRefGoogle Scholar
  186. 186.
    Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK (2001) Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33:1098–1109PubMedCrossRefGoogle Scholar
  187. 187.
    Pediaditakis P, Lopez-Talavera JC, Petersen B, Monga SP, Michalopoulos GK (2001) The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat. Hepatology 34:688–693PubMedCrossRefGoogle Scholar
  188. 188.
    Stolz DB, Mars WM, Petersen BE, Kim TH, Michalopoulos GK (1999) Growth factor signal transduction immediately after two-thirds partial hepatectomy in the rat. Cancer Res 59:3954–3960PubMedGoogle Scholar
  189. 189.
    Sodhi D, Micsenyi A, Bowen WC, Monga DK, Talavera JC, Monga SP (2005) Morpholino oligonucleotide-triggered beta-catenin knockdown compromises normal liver regeneration. J Hepatol 43:132–141PubMedCrossRefGoogle Scholar
  190. 190.
    Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP (2008) Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology 47:288–295PubMedCrossRefGoogle Scholar
  191. 191.
    Hu M, Kurobe M, Jeong YJ, Fuerer C, Ghole S, Nusse R, Sylvester KG (2007) Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology 133:1579–1591PubMedCrossRefGoogle Scholar
  192. 192.
    Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN, Chen C, Liu SQ, Wu MC, Wang HY (2008) Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 68:4287–4295PubMedCrossRefGoogle Scholar
  193. 193.
    Rebouissou S, Couchy G, Libbrecht L, Balabaud C, Imbeaud S, Auffray C, Roskams T, Bioulac-Sage P, Zucman-Rossi J (2008) The beta-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules. J Hepatol 49:61–71PubMedCrossRefGoogle Scholar
  194. 194.
    Chen YW, Jeng YM, Yeh SH, Chen PJ (2002) P53 gene and Wnt signaling in benign neoplasms: beta-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia. Hepatology 36:927–935PubMedGoogle Scholar
  195. 195.
    Bioulac-Sage P, Laumonier H, Rullier A, Cubel G, Laurent C, Zucman-Rossi J, Balabaud C (2009) Over-expression of glutamine synthetase in focal nodular hyperplasia: a novel easy diagnostic tool in surgical pathology. Liver Int 29: 459–465PubMedCrossRefGoogle Scholar
  196. 196.
    Torbenson M, Lee JH, Choti M, Gage W, Abraham SC, Montgomery E, Boitnott J, Wu TT (2002) Hepatic adenomas: analysis of sex steroid receptor status and the Wnt signaling pathway. Mod Pathol 15:189–196PubMedCrossRefGoogle Scholar
  197. 197.
    Zucman-Rossi J, Jeannot E, Nhieu JT, Scoazec JY, Guettier C, Rebouissou S, Bacq Y, Leteurtre E, Paradis V, Michalak S, Wendum D, Chiche L, Fabre M, Mellottee L, Laurent C, Partensky C, Castaing D, Zafrani ES, Laurent-Puig P, Balabaud C, Bioulac-Sage P (2006) Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 43:515–524PubMedCrossRefGoogle Scholar
  198. 198.
    Bioulac-Sage P, Rebouissou S, Thomas C, Blanc JF, Saric J, Sa Cunha A, Rullier A, Cubel G, Couchy G, Imbeaud S, Balabaud C, Zucman-Rossi J (2007) Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 46:740–748PubMedCrossRefGoogle Scholar
  199. 199.
    Hughes LJ, Michels VV (1992) Risk of hepatoblastoma in familial adenomatous polyposis. Am J Med Genet 43: 1023–1025PubMedCrossRefGoogle Scholar
  200. 200.
    Kurahashi H, Takami K, Oue T, Kusafuka T, Okada A, Tawa A, Okada S, Nishisho I (1995) Biallelic inactivation of the APC gene in hepatoblastoma. Cancer Res 55: 5007–5011PubMedGoogle Scholar
  201. 201.
    Oda H, Imai Y, Nakatsuru Y, Hata J, Ishikawa T (1996) Somatic mutations of the APC gene in sporadic hepatoblastomas. Cancer Res 56:3320–3323PubMedGoogle Scholar
  202. 202.
    Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59:269–273PubMedGoogle Scholar
  203. 203.
    Jeng YM, Wu MZ, Mao TL, Chang MH, Hsu HC (2000) Somatic mutations of beta-catenin play a crucial role in the tumorigenesis of sporadic hepatoblastoma. Cancer Lett 152:45–51PubMedCrossRefGoogle Scholar
  204. 204.
    Udatsu Y, Kusafuka T, Kuroda S, Miao J, Okada A (2001) High frequency of beta-catenin mutations in hepatoblastoma. Pediatr Surg Int 17:508–512PubMedCrossRefGoogle Scholar
  205. 205.
    Wei Y, Fabre M, Branchereau S, Gauthier F, Perilongo G, Buendia MA (2000) Activation of beta-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19:498–504PubMedCrossRefGoogle Scholar
  206. 206.
    Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM, Nagorney DM, Burgart LJ, Roche PC, Smith DI, Ross JA, Liu W (2002) Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21:4863–4871PubMedCrossRefGoogle Scholar
  207. 207.
    Fukuzawa R, Hata J, Hayashi Y, Ikeda H, Reeve AE (2003) Beckwith-Wiedemann syndrome-associated hepatoblastoma: wnt signal activation occurs later in tumorigenesis in patients with 11p15.5 uniparental disomy. Pediatr Dev Pathol 6:299–306PubMedCrossRefGoogle Scholar
  208. 208.
    Park WS, Oh RR, Park JY, Kim PJ, Shin MS, Lee JH, Kim HS, Lee SH, Kim SY, Park YG, An WG, Jang JJ, Yoo NJ, Lee JY (2001) Nuclear localization of beta-catenin is an important prognostic factor in hepatoblastoma. J Pathol 193:483–490PubMedCrossRefGoogle Scholar
  209. 209.
    Wirths O, Waha A, Weggen S, Schirmacher P, Kuhne T, Goodyer CG, Albrecht S, Von Schweinitz D, Pietsch T (2003) Overexpression of human Dickkopf-1, an antagonist of wingless/WNT signaling, in human hepatoblastomas and Wilms’ tumors. Lab Invest 83:429–434PubMedGoogle Scholar
  210. 210.
    Tannapfel A, Wittekind C (2002) Genes involved in hepatocellular carcinoma: deregulation in cell cycling and apoptosis. Virchows Arch 440:345–352PubMedCrossRefGoogle Scholar
  211. 211.
    Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763–1773PubMedCrossRefGoogle Scholar
  212. 212.
    Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851PubMedGoogle Scholar
  213. 213.
    Ihara A, Koizumi H, Hashizume R, Uchikoshi T (1996) Expression of epithelial cadherin and alpha- and beta-catenins in nontumoral livers and hepatocellular carcinomas. Hepatology 23:1441–1447PubMedGoogle Scholar
  214. 214.
    de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C (1998) Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95:8847–8851CrossRefGoogle Scholar
  215. 215.
    Kondo Y, Kanai Y, Sakamoto M, Genda T, Mizokami M, Ueda R, Hirohashi S (1999) Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma. Jpn J Cancer Res 90:1301–1309PubMedGoogle Scholar
  216. 216.
    Legoix P, Bluteau O, Bayer J, Perret C, Balabaud C, Belghiti J, Franco D, Thomas G, Laurent-Puig P, Zucman-Rossi J (1999) Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene 18:4044–4046PubMedCrossRefGoogle Scholar
  217. 217.
    Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA (1999) Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol 155:703–710PubMedGoogle Scholar
  218. 218.
    Wong CM, Fan ST, Ng IO (2001) beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92: 136–145PubMedCrossRefGoogle Scholar
  219. 219.
    Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24:245–250PubMedCrossRefGoogle Scholar
  220. 220.
    Ban KC, Singh H, Krishnan R, Seow HF (2003) GSK-3beta phosphorylation and alteration of beta-catenin in hepatocellular carcinoma. Cancer Lett 199:201–208PubMedCrossRefGoogle Scholar
  221. 221.
    Cui J, Zhou X, Liu Y, Tang Z, Romeih M (2003) Alterations of beta-catenin and Tcf-4 instead of GSK-3beta contribute to activation of Wnt pathway in hepatocellular carcinoma. Chin Med J (Engl) 116:1885–1892Google Scholar
  222. 222.
    Gotoh J, Obata M, Yoshie M, Kasai S, Ogawa K (2003) Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3 beta and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis 24:435–442PubMedCrossRefGoogle Scholar
  223. 223.
    Kim M, Lee HC, Tsedensodnom O, Hartley R, Lim YS, Yu E, Merle P, Wands JR (2008) Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol 48:780–791PubMedCrossRefGoogle Scholar
  224. 224.
    Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, Kew MC, Trepo C, Wands JR (2004) Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology 127:1110–1122PubMedCrossRefGoogle Scholar
  225. 225.
    Takagi H, Sasaki S, Suzuki H, Toyota M, Maruyama R, Nojima M, Yamamoto H, Omata M, Tokino T, Imai K, Shinomura Y (2008) Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol 43:378–389PubMedCrossRefGoogle Scholar
  226. 226.
    Zucman-Rossi J, Benhamouche S, Godard C, Boyault S, Grimber G, Balabaud C, Cunha AS, Bioulac-Sage P, Perret C (2007) Differential effects of inactivated Axin1 and ­activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene 26:774–780PubMedCrossRefGoogle Scholar
  227. 227.
    Huang H, Fujii H, Sankila A, Mahler-Araujo BM, Matsuda M, Cathomas G, Ohgaki H (1999) Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol 155: 1795–1801PubMedGoogle Scholar
  228. 228.
    Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY (2000) Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157:763–770PubMedGoogle Scholar
  229. 229.
    Devereux TR, Stern MC, Flake GP, Yu MC, Zhang ZQ, London SJ, Taylor JA (2001) CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog 31:68–73PubMedCrossRefGoogle Scholar
  230. 230.
    Edamoto Y, Hara A, Biernat W, Terracciano L, Cathomas G, Riehle HM, Matsuda M, Fujii H, Scoazec JY, Ohgaki H (2003) Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer 106:334–341PubMedCrossRefGoogle Scholar
  231. 231.
    Mao TL, Chu JS, Jeng YM, Lai PL, Hsu HC (2001) Expression of mutant nuclear beta-catenin correlates with non-invasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis. J Pathol 193:95–101PubMedCrossRefGoogle Scholar
  232. 232.
    Schmitt-Graff A, Ertelt V, Allgaier HP, Koelble K, Olschewski M, Nitschke R, Bochaton-Piallat ML, Gabbiani G, Blum HE (2003) Cellular retinol-binding protein-1 in hepatocellular carcinoma correlates with beta-catenin, Ki-67 index, and patient survival. Hepatology 38:470–480PubMedCrossRefGoogle Scholar
  233. 233.
    Huang H, Ushijima T, Nagao M, Sugimura T, Ohgaki H (2003) Beta-catenin mutations in liver tumors induced by 2-amino-3, 4-dimethylimidazo[4, 5-f]quinoline in CDF1 mice. Cancer Lett 198:29–35PubMedCrossRefGoogle Scholar
  234. 234.
    Nakanuma Y, Harada K, Ishikawa A, Zen Y, Sasaki M (2003) Anatomic and molecular pathology of intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Surg 10: 265–281PubMedCrossRefGoogle Scholar
  235. 235.
    Chen Q, Schubert D (2002) Presenilin-interacting proteins. Expert Rev Mol Med 4:1–18PubMedCrossRefGoogle Scholar
  236. 236.
    Colombo C, Okolicsanyi L, Strazzabosco M (2000) Advances in familial and congenital cholestatic diseases. Clinical and diagnostic implications. Dig Liver Dis 32: 152–159PubMedCrossRefGoogle Scholar
  237. 237.
    De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev 33:1–12PubMedGoogle Scholar
  238. 238.
    McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082PubMedGoogle Scholar
  239. 239.
    Nijjar SS, Wallace L, Crosby HA, Hubscher SG, Strain AJ (2002) Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects. Am J Pathol 160:1695–1703PubMedGoogle Scholar
  240. 240.
    Ashida K, Terada T, Kitamura Y, Kaibara N (1998) Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study. Hepatology 27:974–982PubMedCrossRefGoogle Scholar
  241. 241.
    Rashid A (2002) Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am 11:995–1009PubMedCrossRefGoogle Scholar
  242. 242.
    Sugimachi K, Taguchi K, Aishima S, Tanaka S, Shimada M, Kajiyama K, Tsuneyoshi M (2001) Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol 14:900–905PubMedCrossRefGoogle Scholar
  243. 243.
    Rashid A, Gao YT, Bhakta S, Shen MC, Wang BS, Deng J, Fraumeni JF Jr, Hsing AW (2001) Beta-catenin mutations in biliary tract cancers: a population-based study in China. Cancer Res 61:3406–3409PubMedGoogle Scholar
  244. 244.
    Abraham SC, Lee JH, Hruban RH, Argani P, Furth EE, Wu TT (2003) Molecular and immunohistochemical analysis of intraductal papillary neoplasms of the biliary tract. Hum Pathol 34:902–910PubMedCrossRefGoogle Scholar
  245. 245.
    Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162:1495–1502PubMedGoogle Scholar
  246. 246.
    Kim SJ, Im DS, Kim SH, Ryu JH, Hwang SG, Seong JK, Chun CH, Chun JS (2002) Beta-catenin regulates expression of cyclooxygenase-2 in articular chondrocytes. Biochem Biophys Res Commun 296:221–226PubMedCrossRefGoogle Scholar
  247. 247.
    Surendran K, McCaul SP, Simon TC (2002) A role for Wnt-4 in renal fibrosis. Am J Physiol Renal Physiol 282:F431–F441Google Scholar
  248. 248.
    Surendran K, Simon TC (2003) CNP gene expression is activated by Wnt signaling and correlates with Wnt4 expression during renal injury. Am J Physiol Renal Physiol 284:F653–F662Google Scholar
  249. 249.
    Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW (2002) Insights into the pathobiology of hepatitis C virus-associated cirrhosis: analysis of intrahepatic differential gene expression. Am J Pathol 160: 641–654PubMedGoogle Scholar
  250. 250.
    Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW (2001) Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression. Gut 49:565–576PubMedCrossRefGoogle Scholar
  251. 251.
    Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48:1312–1327PubMedCrossRefGoogle Scholar
  252. 252.
    Zeng G, Apte U, Cieply B, Singh S, Monga SP (2007) siRNA-mediated beta-catenin knockdown in human hepatoma cells results in decreased growth and survival. Neoplasia 9:951–959PubMedCrossRefGoogle Scholar
  253. 253.
    Yao M, Kargman S, Lam EC, Kelly CR, Zheng Y, Luk P, Kwong E, Evans JF, Wolfe MM (2003) Inhibition of cyclooxygenase-2 by rofecoxib attenuates the growth and metastatic potential of colorectal carcinoma in mice. Cancer Res 63:586–592PubMedGoogle Scholar
  254. 254.
    Behari J, Zeng G, Otruba W, Thompson MD, Muller P, Micsenyi A, Sekhon SS, Leoni L, Monga SP (2007) R-Etodolac decreases beta-catenin levels along with survival and proliferation of hepatoma cells. J Hepatol 46: 849–857PubMedCrossRefGoogle Scholar
  255. 255.
    Zhou L, An N, Haydon RC, Zhou Q, Cheng H, Peng Y, Jiang W, Luu HH, Vanichakarn P, Szatkowski JP, Park JY, Breyer B, He TC (2003) Tyrosine kinase inhibitor STI-571/Gleevec down-regulates the beta-catenin signaling activity. Cancer Lett 193:161–170PubMedCrossRefGoogle Scholar
  256. 256.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359: 378–390PubMedCrossRefGoogle Scholar
  257. 257.
    Li H, Pamukcu R, Thompson WJ (2002) beta-Catenin signaling: therapeutic strategies in oncology. Cancer Biol Ther 1:621–625PubMedGoogle Scholar
  258. 258.
    Thompson MD, Monga SP (2007) WNT/beta-catenin signaling in liver health and disease. Hepatology 45:1298–1305PubMedCrossRefGoogle Scholar
  259. 259.
    Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, Sakamoto D, Caothien RH, Fuller JH, Reinhard C, Garcia PD, Randazzo FM, Escobedo J, Fantl WJ, Williams LT (2001) Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta -catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA 98:14973–14978PubMedCrossRefGoogle Scholar
  260. 260.
    Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J, Waldman T (2002) Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 62:2744–2748PubMedGoogle Scholar
  261. 261.
    Baker JC, Beddington RS, Harland RM (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev 13:3149–3159PubMedCrossRefGoogle Scholar
  262. 262.
    Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski C (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96:1603–1608PubMedCrossRefGoogle Scholar
  263. 263.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway [see comments]. Science 281:1509–1512PubMedCrossRefGoogle Scholar
  264. 264.
    Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J, Korsmeyer SJ, Daley GQ, Zon LI (2003) cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425:300–306PubMedCrossRefGoogle Scholar
  265. 265.
    van der Heyden MA, Rook MB, Hermans MM, Rijksen G, Boonstra J, Defize LH, Destree OH (1998) Identification of connexin43 as a functional target for Wnt signalling. J Cell Sci 111(Pt 12):1741–1749PubMedGoogle Scholar
  266. 266.
    Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AM (1999) Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59:1572–1577PubMedGoogle Scholar
  267. 267.
    Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, MacDougald OA (2002) Wnt signaling protects 3T3–L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J Biol Chem 277:38239–38244PubMedCrossRefGoogle Scholar
  268. 268.
    Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426PubMedCrossRefGoogle Scholar
  269. 269.
    Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96:5522–5527PubMedCrossRefGoogle Scholar
  270. 270.
    Jamora C, DasGupta R, Kocieniewski P, Fuchs E (2003) Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422:317–322PubMedCrossRefGoogle Scholar
  271. 271.
    Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev 16:3173–3185PubMedCrossRefGoogle Scholar
  272. 272.
    Gradl D, Kuhl M, Wedlich D (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19:5576–5587PubMedGoogle Scholar
  273. 273.
    Yamamoto Y, Sakamoto M, Fujii G, Tsuiji H, Kenetaka K, Asaka M, Hirohashi S (2003) Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology 37:528–533PubMedCrossRefGoogle Scholar
  274. 274.
    DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMedGoogle Scholar
  275. 275.
    Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T (1999) Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155:1033–1038PubMedGoogle Scholar
  276. 276.
    Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891PubMedCrossRefGoogle Scholar
  277. 277.
    Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61:8664–8667PubMedGoogle Scholar
  278. 278.
    Zhang X, Gaspard JP, Chung DC (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 61:6050–6054PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Division of Experimental PathologyUniversity of Pittsburgh, School of MedicinePittsburghUSA

Personalised recommendations