Advertisement

The MYC Network and Cancer

  • Snorri S. ThorgeirssonEmail author
  • Valentina M. Factor
Chapter

Abstract

Deregulation of c-Myc (referred to as MYC] contributes to the development of the most human tumors [1–3]. In addition to MYC, the Myc gene family contains three related genes, N-Myc, L-Myc, and S-Myc, which are also implicated in the genesis of specific human tumors (for review, see ref [4]). MYC is a nuclear transcription factor, which is first identified as the cellular homologue of the cancer-causing gene in the avian myelocytomatosis retrovirus [5]. MYC functions in a heterodimeric complex with MAX to bind E-Box motifs in DNA, and transcriptionally regulates hundreds to thousands of target genes. The most recent estimates suggest that MYC could regulate as many as 15% of genes in genomes from flies to human [6]. A compilation of MYC-regulated genes and studies on MYC alterations in human cancers is available online at www.myccancergene.org [6]. This database emphasizes both the critical role of MYC in human cancers and the significance of MYC target genes in driving its oncogenic activity. The target genes are involved in diverse programs including cell cycle, cell growth, protein synthesis, cell adhesion and cytoskeleton, metabolism, apoptosis, angiogenesis, DNA repair, and microRNA [6–8]. The diversity of MYC target genes is illustrated in Fig. 24.1. Numerous excellent and comprehensive reviews have been written about MYC [9–12]. Therefore, in this chapter, we will focus mainly on the role of MYC in cancer with the emphasis on the most recent findings.

Keywords

Rosa26 Promoter Direct Physical Evidence Transcription Factor Association Conditional Transgenic Mouse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18: 3004–3016CrossRefPubMedGoogle Scholar
  2. 2.
    Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1–11PubMedGoogle Scholar
  3. 3.
    Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776CrossRefPubMedGoogle Scholar
  4. 4.
    Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645CrossRefPubMedGoogle Scholar
  5. 5.
    Bishop JM (1982) Retroviruses and cancer genes. In: George Kline SW (ed) Advances in cancer research, 37. Academic Press Inc., New York, pp 1–32Google Scholar
  6. 6.
    Dang CV, O’Donnell KA, Zeller KI et al (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264CrossRefPubMedGoogle Scholar
  7. 7.
    Oster SK, Ho CS, Soucie EL et al (2002) The MYC oncogene: marvelously complex. Adv Cancer Res 84:81–154CrossRefPubMedGoogle Scholar
  8. 8.
    Alitalo K, Schwab M (1986) Oncogene amplification in tumor cells. Adv Cancer Res 47:235–281CrossRefPubMedGoogle Scholar
  9. 9.
    Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990CrossRefPubMedGoogle Scholar
  10. 10.
    Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766CrossRefPubMedGoogle Scholar
  11. 11.
    Secombe J, Pierce SB, Eisenman RN (2004) Myc: a weapon of mass destruction. Cell 117:153–156CrossRefPubMedGoogle Scholar
  12. 12.
    Eisenman RN (2001) Deconstructing myc. Genes Dev 15: 2023–2030CrossRefPubMedGoogle Scholar
  13. 13.
    Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in BALB/c 3 T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 84:1182–1186CrossRefPubMedGoogle Scholar
  14. 14.
    Lanahan A, Williams JB, Sanders LK et al (1992) Growth factor induced delayed early response genes. Mol Cell Biol 12:3919–3929PubMedGoogle Scholar
  15. 15.
    Kim SY, Herbst A, Tworkowski KA et al (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11: 1177–1188CrossRefPubMedGoogle Scholar
  16. 16.
    Salghetti SE, Kim SY, Tansey WP (1999) Destruction of Myc by ubiquitinmediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18: 717–726CrossRefPubMedGoogle Scholar
  17. 17.
    Lutterbach B, Hann SR (1999) c-Myc transactivation domain-associated kinases: questionable role for map kinases in c-Myc phosphorylation. J Cell Biochem 72: 483–491CrossRefPubMedGoogle Scholar
  18. 18.
    Lutterbach B, Hann SR (1994) Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 14:5510–5522PubMedGoogle Scholar
  19. 19.
    Sears R, Leone G, DeGregori J et al (1999) Ras enhances Myc protein stability. Mol Cell 3:169–179CrossRefPubMedGoogle Scholar
  20. 20.
    Yeh E, Cunningham M, Arnold H et al (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6:308–318CrossRefPubMedGoogle Scholar
  21. 21.
    Sakamuro D, Prendergast GC (1999) New Myc-interacting proteins: a second Myc network emerges. Oncogene 18: 2942–2954CrossRefPubMedGoogle Scholar
  22. 22.
    Sakamuro D, Elliott KJ, Wechsler-Reya R et al (1996) BIN1 is a Novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69–77CrossRefPubMedGoogle Scholar
  23. 23.
    Eilers M, Picard D, Yamamoto KR et al (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340:66–68CrossRefPubMedGoogle Scholar
  24. 24.
    Eberhardy SR, Farnham PJ (2001) c-Myc mediates activation of the cad promoter via a post-RNApolymerase II recruitment mechanism. J Biol Chem 276:48562–48571PubMedGoogle Scholar
  25. 25.
    Zeller KI, Haggerty TJ, Barrett JF et al (2001) Charac­terization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J Biol Chem 76: 48285–48291Google Scholar
  26. 26.
    Mao DY, Watson JD, Yan PS et al (2003) Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr Biol 13:882–886CrossRefPubMedGoogle Scholar
  27. 27.
    Haggerty TJ, Zeller KI, Osthus RC et al (2003) A strategy for identifying transcription factor binding sites reveals two classes of genomic c-Myc target sites. Proc Natl Acad Sci U S A 100:5313–5318CrossRefPubMedGoogle Scholar
  28. 28.
    Coller HA, Grandori C, Tamayo P et al (2000) Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A 97:3260–3265CrossRefPubMedGoogle Scholar
  29. 29.
    Guo QM, Malek RL, Kim S et al (2000) Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 60:5922–5928PubMedGoogle Scholar
  30. 30.
    Schuldiner O, Benvenisty N (2001) A DNA microarray screen for genes involved in c-MYC and N-MYC oncogenesis in human tumors. Oncogene 20:4984–4994CrossRefPubMedGoogle Scholar
  31. 31.
    Marinkovic D, Marinkovic T, Kokai E et al (2004) Identification of novel Myc target genes with a potential role in lymphomagenesis. Nucleic Acids Res 32:5368–5378CrossRefPubMedGoogle Scholar
  32. 32.
    Lawlor ER, Soucek L, Brown-Swigart L et al (2006) Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. Cancer Res 66:4591–4601CrossRefPubMedGoogle Scholar
  33. 33.
    O’Connell BC, Cheung AF, Simkevich CP et al (2003) A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278:12563–12573CrossRefPubMedGoogle Scholar
  34. 34.
    Ellwood-Yen K, Graeber TG, Wongvipat J et al (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4:223–238CrossRefPubMedGoogle Scholar
  35. 35.
    Lee JS, Chu IS, Mikaelyan A et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36:1306–1311CrossRefPubMedGoogle Scholar
  36. 36.
    Wu CH, Sahoo D, Arvanitis C et al (2008) Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet 4:1–16CrossRefGoogle Scholar
  37. 37.
    Sahoo D, Dill DL, Tibshirani R et al (2007) Extracting binary signals from microarray time-course data. Nucleic Acids Res 35:3705–3712CrossRefPubMedGoogle Scholar
  38. 38.
    Liu J, Levens D (2006) Making myc. Curr Top Microbiol Immunol 302:1–32CrossRefPubMedGoogle Scholar
  39. 39.
    Rabbitts PH, Watson JV, Lamond A et al (1985) Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J 4:2009–2015PubMedGoogle Scholar
  40. 40.
    Ramsay G, Evan GI, Bishop JM (1984) The protein encoded by the human proto-oncogene c-myc. Proc Natl Acad Sci U S A 81:7742–7746CrossRefPubMedGoogle Scholar
  41. 41.
    Popescu NC, Zimonjic DB (2002) Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med 6:151–159CrossRefPubMedGoogle Scholar
  42. 42.
    Spencer CA, Groudine M (1991) Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res 56:1–48CrossRefPubMedGoogle Scholar
  43. 43.
    Sears R, Leone G, DeGregori J et al (1999) Ras enhances Myc protein stability. Mol Cell 3:169–79CrossRefPubMedGoogle Scholar
  44. 44.
    He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–12CrossRefPubMedGoogle Scholar
  45. 45.
    Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66:131–144CrossRefPubMedGoogle Scholar
  46. 46.
    Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322CrossRefPubMedGoogle Scholar
  47. 47.
    Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315CrossRefPubMedGoogle Scholar
  48. 48.
    Eischen CM, Weber JD, Roussel MF et al (1999) Disruption of the ARF-Mdm2–p53 tumor suppressor pathway in Mycinduced lymphomagenesis. Genes Dev 13:2658–2669CrossRefPubMedGoogle Scholar
  49. 49.
    Kamijo T, Weber JD, Zambetti G et al (1998) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A 95:8292–8297CrossRefPubMedGoogle Scholar
  50. 50.
    Schmitt CA, McCurrach ME, de Stanchina E et al (1999) INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670–2677CrossRefPubMedGoogle Scholar
  51. 51.
    Zindy F, Eischen CM, Randle DH et al (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433CrossRefPubMedGoogle Scholar
  52. 52.
    Askew DS, Ashmun RA, Simmons BC et al (1991) Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6:1915–1922PubMedGoogle Scholar
  53. 53.
    Evan GI, Wyllie AH, Gilbert CS et al (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128CrossRefPubMedGoogle Scholar
  54. 54.
    Murphy DJ, Junttila MR, Pouyet L et al (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14:447–457CrossRefPubMedGoogle Scholar
  55. 55.
    Freie BW, Eisenman RN (2008) Ratcheting Myc. Cancer Cell 14:425–426CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations