Advertisement

Bile Acids and Their Receptors

  • Thierry Claudel
  • Michael TraunerEmail author
Chapter

Abstract

In animals, cholesterol is an essential molecule for membrane formation and synthesis of hormones and bile acids (BAs). Excess of cholesterol, either due to food consumption or endogenous synthesis, leads to gallstone formation and atherosclerosis. BAs produced from cholesterol and free cholesterol are secreted into bile and subsequently eliminated via feces, the only route to eliminate excess of cholesterol. As a major secretory pathway, the different steps of bile formation are precisely controlled and coordinated mostly via a complex network of nuclear receptors. Nuclear receptors (NRs) are transcription factors that, upon ligand binding and cofactors recruitment, modulate polymerase II activity and therefore gene expression, after binding to highly specific DNA response elements located in gene promoters. The Farnesoid X Receptor (FXR, NR1H4) [1] is a bile acid activated nuclear receptor [2–4], regulating several key steps of hepatic physiology such as bile formation, phase I/II metabolism, and glucose, lipid, and lipoprotein metabolisms [5]. Moreover, other NRs like Pregnane X Receptor (PXR; NRI2) [6, 7], Vitamin D Receptor (VDR; NR1I1) [8], and Constitutive Androstane Receptor (CAR; NR1I3) [9, 10] were identified as additional bile acid responsive NRs. In addition to NRs, BAs can also activate a membrane receptor for BAs (TGR5/BG37) [11, 12], a step which does not require bile acid uptake into target cells. Both FXR and TGR5 may play an important role in the pathogenesis and treatment of a variety of hepatic and extrahepatic metabolic disorders including cholestasis, fatty liver, diabetes, dylipidemia, and atherosclerosis.

Keywords

Bile Acid Brown Adipose Tissue Constitutive Androstane Receptor Bile Acid Synthesis Bile Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Forman BM, Goode E, Chen J et al (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81(5):687–693PubMedCrossRefGoogle Scholar
  2. 2.
    Makishima M, Okamoto AY, Repa JJ et al (1999) Iden­tification of a nuclear receptor for bile acids. Science 284 (5418):1362–1365PubMedCrossRefGoogle Scholar
  3. 3.
    Parks DJ, Blanchard SG, Bledsoe RK et al (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418):1365–1368PubMedCrossRefGoogle Scholar
  4. 4.
    Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3(5):543–553PubMedCrossRefGoogle Scholar
  5. 5.
    Claudel T, Staels B, Kuipers F (2005) The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 25(10):2020–2030PubMedCrossRefGoogle Scholar
  6. 6.
    Staudinger JL, Goodwin B, Jones SA et al (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. PNAS 98(6):3369–3374PubMedCrossRefGoogle Scholar
  7. 7.
    Xie W, Radominska-Pandya A, Shi Y et al (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 98(6): 3375–3380PubMedCrossRefGoogle Scholar
  8. 8.
    Makishima M, Lu TT, Xie W et al (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571): 1313–1316PubMedCrossRefGoogle Scholar
  9. 9.
    Uppal H, Toma D, Saini SP, Ren S, Jones TJ, Xie W (2005) Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 41(1): 168–176PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang J, Huang W, Qatanani M, Evans RM, Moore DD (2004) The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 279(47):49517–49522PubMedCrossRefGoogle Scholar
  11. 11.
    Maruyama T, Miyamoto Y, Nakamura T et al (2002) Iden­tification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298(5):714–719PubMedCrossRefGoogle Scholar
  12. 12.
    Kawamata Y, Fujii R, Hosoya M et al (2003) A G Protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440PubMedCrossRefGoogle Scholar
  13. 13.
    Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83(2):633–671PubMedGoogle Scholar
  14. 14.
    Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159(22): 2647–2658PubMedCrossRefGoogle Scholar
  15. 15.
    Nathanson MH, Boyer JL (1991) Mechanisms and regulation of bile secretion. Hepatology 14(3):551–566PubMedCrossRefGoogle Scholar
  16. 16.
    Baiocchi L, LeSage G, Glaser S, Alpini G (1999) Regulation of cholangiocyte bile secretion. J Hepatol 31(1): 179–191PubMedCrossRefGoogle Scholar
  17. 17.
    Marzioni M, Glaser SS, Francis H, Phinizy JL, LeSage G, Alpini G (2002) Functional heterogeneity of cholangiocytes. Semin Liver Dis 22(3):227–240PubMedCrossRefGoogle Scholar
  18. 18.
    Lazaridis KN, Strazzabosco M, Larusso NF (2004) The cholangiopathies: disorders of biliary epithelia. Gastroenterology 127(5):1565–1577PubMedCrossRefGoogle Scholar
  19. 19.
    Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1):322–342PubMedCrossRefGoogle Scholar
  20. 20.
    Trauner M, Wagner M, Fickert P, Zollner G (2005) Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis. J Clin Gastroenterol 39(4 Suppl 2):S111–124CrossRefGoogle Scholar
  21. 21.
    Hofmann AF (1999) Bile acids: The good, the bad, and the ugly. News Physiol Sci 14:24–29PubMedGoogle Scholar
  22. 22.
    Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L (2007) Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med 13(7):298–309PubMedCrossRefGoogle Scholar
  23. 23.
    Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 72:137–174PubMedCrossRefGoogle Scholar
  24. 24.
    Chiang JY (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40(3): 539–551PubMedCrossRefGoogle Scholar
  25. 25.
    Lehmann JM, Kliewer SA, Moore LB et al (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272(6):3137–3140PubMedCrossRefGoogle Scholar
  26. 26.
    Peet DJ, Turley SD, Ma W et al (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93(5):693–704PubMedCrossRefGoogle Scholar
  27. 27.
    Kern F Jr (1991) Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day Mechanisms of adaptation. N Engl J Med 324(13):896–899PubMedCrossRefGoogle Scholar
  28. 28.
    Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6(3):517–526PubMedCrossRefGoogle Scholar
  29. 29.
    Lu TT, Makishima M, Repa JJ et al (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6(3):507–515PubMedCrossRefGoogle Scholar
  30. 30.
    Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ (2001) Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21(4):1393–1403PubMedCrossRefGoogle Scholar
  31. 31.
    Davis RA, Miyake JH, Hui TY, Spann NJ (2002) Regulation of cholesterol-7alpha-hydroxylase: BAREly missing a SHP. J Lipid Res 43(4):533–543PubMedGoogle Scholar
  32. 32.
    Mataki C, Magnier BC, Houten SM et al (2007) Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1. Mol Cell Biol 27(23): 8330–8339PubMedCrossRefGoogle Scholar
  33. 33.
    Lee YK, Schmidt DR, Cummins CL et al (2008) Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol 22(6):1345–1356PubMedCrossRefGoogle Scholar
  34. 34.
    Li-Hawkins J, Lund EG, Turley SD, Russell DW (2000) Disruption of the oxysterol 7alpha-hydroxylase gene in mice. J Biol Chem 275(22):16536–16542PubMedCrossRefGoogle Scholar
  35. 35.
    Kerr TA, Saeki S, Schneider M et al (2002) Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis. Dev Cell 2(6): 713–720PubMedCrossRefGoogle Scholar
  36. 36.
    Wang L, Lee YK, Bundman D et al (2002) Redundant pathways for negative feedback regulation of bile Acid production. Dev Cell 2(6):721–731PubMedCrossRefGoogle Scholar
  37. 37.
    Kim I, Ahn SH, Inagaki T et al (2007) Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48(12):2664–2672PubMedCrossRefGoogle Scholar
  38. 38.
    Jung D, Kullak-Ublick GA (2003) Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 37(3):622–631PubMedCrossRefGoogle Scholar
  39. 39.
    De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M (2003) Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 278(40):39124–39132PubMedCrossRefGoogle Scholar
  40. 40.
    Li T, Chiang JY (2005) Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288(1):G74–84CrossRefGoogle Scholar
  41. 41.
    Kesaniemi YA, Grundy SM (1984) Influence of gemfibrozil and clofibrate on metabolism of cholesterol and plasma triglycerides in man. Jama 251(17):2241–2246PubMedCrossRefGoogle Scholar
  42. 42.
    Marrapodi M, Chiang JY (2000) Peroxisome proliferator-activated receptor alpha (PPARalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Lipid Res 41(4):514–520PubMedGoogle Scholar
  43. 43.
    Hunt MC, Yang YZ, Eggertsen G et al (2000) The peroxisome proliferator-activated receptor alpha (PPARalpha) regulates bile acid biosynthesis. J Biol Chem 275(37): 28947–28953PubMedCrossRefGoogle Scholar
  44. 44.
    Gupta S, Stravitz RT, Dent P, Hylemon PB (2001) Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 276(19):15816–15822PubMedCrossRefGoogle Scholar
  45. 45.
    De Fabiani E, Mitro N, Anzulovich AC, Pinelli A, Galli G, Crestani M (2001) The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: a novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J Biol Chem 276(33):30708–30716PubMedCrossRefGoogle Scholar
  46. 46.
    Pandak WM, Li YC, Chiang JY et al (1991) Regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by taurocholate and cholesterol in the chronic biliary diverted rat. J Biol Chem 266(6):3416–3421PubMedGoogle Scholar
  47. 47.
    Inagaki T, Choi M, Moschetta A et al (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2(4):217–225PubMedCrossRefGoogle Scholar
  48. 48.
    Holt JA, Luo G, Billin AN et al (2003) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17(13):1581–1591PubMedCrossRefGoogle Scholar
  49. 49.
    Yu C, Wang F, Kan M et al (2000) Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 275(20): 15482–15489PubMedCrossRefGoogle Scholar
  50. 50.
    Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y (2005) Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 115(8):2202–2208PubMedCrossRefGoogle Scholar
  51. 51.
    Lin BC, Wang M, Blackmore C, Desnoyers LR (2007) Liver-specific activities of FGF19 require Klotho beta. J Biol Chem 282(37):27277–27284PubMedCrossRefGoogle Scholar
  52. 52.
    Kurosu H, Choi M, Ogawa Y et al (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282(37):26687–26695PubMedCrossRefGoogle Scholar
  53. 53.
    Wu X, Ge H, Gupte J et al (2007) Co-receptor requirements for fibroblast growth factor-19 signaling. J Biol Chem 282(40):29069–29072PubMedCrossRefGoogle Scholar
  54. 54.
    Jung D, Inagaki T, Dawson PA, Kliewer SA, Mangelsdorf DJ, Moschetta A (2007) FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption. J Lipid Res. 2007 Dec;48(12):2693–2700 Google Scholar
  55. 55.
    Zhang M, Chiang JY (2001) Transcriptional Regulation of the Human Sterol 12alpha Hydroxylase Gene (CYP8B1) Roles of Hepatocyte Nuclear Receptor 4alpha in mediating bile acid repression. J Biol Chem 276(45):41690–41699PubMedCrossRefGoogle Scholar
  56. 56.
    Shoda J, Kano M, Oda K et al (2001) The expression levels of plasma membrane transporters in the cholestatic liver of patients undergoing biliary drainage and their association with the impairment of biliary secretory function. Am J Gastroenterol 96(12):3368–3378PubMedCrossRefGoogle Scholar
  57. 57.
    Bremmelgaard A, Sjovall J (1979) Bile acid profiles in urine of patients with liver diseases. Eur J Clin Invest 9(5):341–348PubMedCrossRefGoogle Scholar
  58. 58.
    Bodin K, Lindbom U, Diczfalusy U (2005) Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 1687(1–3):84–93PubMedGoogle Scholar
  59. 59.
    Handschin C, Meyer UA (2003) Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 55(4): 649–673PubMedCrossRefGoogle Scholar
  60. 60.
    Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA (2004) Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics 14(10):635–645PubMedCrossRefGoogle Scholar
  61. 61.
    Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ (2002) Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 277(28):25125–25132PubMedCrossRefGoogle Scholar
  62. 62.
    Goodwin B, Hodgson E, D’Costa DJ, Robertson GR, Liddle C (2002) Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 62(2):359–365PubMedCrossRefGoogle Scholar
  63. 63.
    Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB (1997) Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. Faseb J 11(1):3–14PubMedGoogle Scholar
  64. 64.
    Falany CN (1997) Enzymology of human cytosolic sulfotransferases. Faseb J 11(4):206–216PubMedGoogle Scholar
  65. 65.
    Thomassen PA (1979) Urinary bile acids in late pregnancy and in recurrent cholestasis of pregnancy. Eur J Clin Invest 9(6):425–432PubMedCrossRefGoogle Scholar
  66. 66.
    Makino I, Hashimoto H, Shinozaki K, Yoshino K, Nakagawa S (1975) Sulfated and nonsulfated bile acids in urine, serum, and bile of patients with hepatobiliary diseases. Gastroenterology 68(3):545–553PubMedGoogle Scholar
  67. 67.
    van Berge Henegouwen GP, Brandt KH, Eyssen H, Parmentier G (1976) Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. Gut 17(11):861–869PubMedCrossRefGoogle Scholar
  68. 68.
    Song CS, Echchgadda I, Baek BS et al (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid x receptor. J Biol Chem 276(45):42549–42556PubMedCrossRefGoogle Scholar
  69. 69.
    Sonoda J, Xie W, Rosenfeld JM, Barwick JL, Guzelian PS, Evans RM (2002) Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proc Natl Acad Sci U S A 99(21):13801–13806PubMedCrossRefGoogle Scholar
  70. 70.
    Echchgadda I, Song CS, Roy AK, Chatterjee B (2004) Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol 65(3):720–729PubMedCrossRefGoogle Scholar
  71. 71.
    Assem M, Schuetz EG, Leggas M et al (2004) Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice. J Biol Chem 279(21):22250–22257PubMedCrossRefGoogle Scholar
  72. 72.
    Saini SP, Sonoda J, Xu L et al (2004) A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 65(2): 292–300PubMedCrossRefGoogle Scholar
  73. 73.
    Makishima M (2005) Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci 97(2): 177–183PubMedCrossRefGoogle Scholar
  74. 74.
    Takikawa H, Beppu T, Seyama Y (1984) Urinary concentrations of bile acid glucuronides and sulfates in hepatobiliary diseases. Gastroenterol Jpn 19(2):104–109PubMedGoogle Scholar
  75. 75.
    Frohling W, Stiehl A (1976) Bile salt glucuronides: identification and quantitative analysis in the urine of patients with cholestasis. Eur J Clin Invest 6(1):67–74PubMedCrossRefGoogle Scholar
  76. 76.
    Barbier O, Torra IP, Sirvent A et al (2003) FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124(7):1926–1940PubMedCrossRefGoogle Scholar
  77. 77.
    Barbier O, Duran-Sandoval D, Pineda-Torra I, Kosykh V, Fruchart JC, Staels B (2003) Peroxisome proliferator-activated receptor alpha induces hepatic expression of the human bile acid glucuronidating UDP-glucuronosyltransferase 2B4 enzyme. J Biol Chem 278(35):32852–32860PubMedCrossRefGoogle Scholar
  78. 78.
    Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B (2003) Bile Acids Induce the Expression of the Human Peroxisome Proliferator- Activated Receptor alpha Gene via Activation of the Farnesoid X Receptor. Mol Endocrinol 17(2):259–272PubMedCrossRefGoogle Scholar
  79. 79.
    Lu Y, Heydel JM, Li X, Bratton S, Lindblom T, Radominska-Pandya A (2005) Lithocholic Acid decreases expression of ugt2b7 in caco-2 cells: a potential role for a negative farnesoid x receptor response element. Drug Metab Dispos 33(7): 937–946PubMedCrossRefGoogle Scholar
  80. 80.
    Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA (2004) Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am J Physiol Gastrointest Liver Physiol 286(5): G752–761CrossRefGoogle Scholar
  81. 81.
    Geier A, Wagner M, Dietrich CG, Trauner M (2007) Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 1773(3):283–308PubMedCrossRefGoogle Scholar
  82. 82.
    Zollner G, Fickert P, Silbert D et al (2002) Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 282(1):G184–191Google Scholar
  83. 83.
    Geier A, Zollner G, Dietrich CG et al (2005) Cytokine-independent repression of rodent Ntcp in obstructive cholestasis. Hepatology 41(3):470–477PubMedCrossRefGoogle Scholar
  84. 84.
    Denson LA, Sturm E, Echevarria W et al (2001) The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121(1):140–147PubMedCrossRefGoogle Scholar
  85. 85.
    Lee YK, Dell H, Dowhan DH, Hadzopoulou-Cladaras M, Moore DD (2000) The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression. Mol Cell Biol 20(1):187–195PubMedCrossRefGoogle Scholar
  86. 86.
    Li D, Zimmerman TL, Thevananther S, Lee HY, Kurie JM, Karpen SJ (2002) Interleukin-1 beta-mediated suppression of RXR:RAR transactivation of the Ntcp promoter is JNK-dependent. J Biol Chem 277(35):31416–31422PubMedCrossRefGoogle Scholar
  87. 87.
    Zollner G, Wagner M, Fickert P et al (2005) Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am J Physiol Gastrointest Liver Physiol 289(5):G798–805CrossRefGoogle Scholar
  88. 88.
    Eloranta JJ, Jung D, Kullak-Ublick GA (2006) The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-depende. Mol Endocrinol 20(1):65–79PubMedCrossRefGoogle Scholar
  89. 89.
    Shneider BL, Fox VL, Schwarz KB et al (1997) Hepatic basolateral sodium-dependent-bile acid transporter expression in two unusual cases of hypercholanemia and in extrahepatic biliary atresia. Hepatology 25(5):1176–1183PubMedCrossRefGoogle Scholar
  90. 90.
    Zollner G, Fickert P, Zenz R et al (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33(3): 633–646PubMedCrossRefGoogle Scholar
  91. 91.
    Zollner G, Fickert P, Silbert D et al (2003) Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38(6):717–727PubMedCrossRefGoogle Scholar
  92. 92.
    Zollner G, Marschall HU, Wagner M, Trauner M (2006) Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 3(3):231–251PubMedCrossRefGoogle Scholar
  93. 93.
    Jung D, Podvinec M, Meyer UA et al (2002) Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastro­enterology 122(7):1954–1966PubMedCrossRefGoogle Scholar
  94. 94.
    Shi X, Bai S, Ford AC et al (1995) Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem 270(43):25591–25595PubMedCrossRefGoogle Scholar
  95. 95.
    Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ (2000) Hepatic transport of bile salts. Semin Liver Dis 20(3): 273–292PubMedCrossRefGoogle Scholar
  96. 96.
    Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661PubMedCrossRefGoogle Scholar
  97. 97.
    Keppler D, Konig J (2000) Hepatic secretion of conjugated drugs and endogenous substances. Semin Liver Dis 20(3): 265–272PubMedCrossRefGoogle Scholar
  98. 98.
    Cui Y, Konig J, Buchholz JK, Spring H, Leier I, Keppler D (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55(5):929–937PubMedGoogle Scholar
  99. 99.
    Dubuisson C, Cresteil D, Desrochers M, Decimo D, Hadchouel M, Jacquemin E (1996) Ontogenic expression of the Na(+)-independent organic anion transporting polypeptide (oatp) in rat liver and kidney. J Hepatol 25(6):932–940PubMedCrossRefGoogle Scholar
  100. 100.
    Elferink RP, Ottenhoff R, van Marle J, Frijters CM, Smith AJ, Groen AK (1998) Class III P-glycoproteins mediate the formation of lipoprotein X in the mouse. J Clin Invest 102(9):1749–1757PubMedCrossRefGoogle Scholar
  101. 101.
    Eloranta JJ, Kullak-Ublick GA (2005) Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 433(2):397–412PubMedCrossRefGoogle Scholar
  102. 102.
    Trauner M, Fickert P, Wagner M (2007) MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 27(1):77–98PubMedCrossRefGoogle Scholar
  103. 103.
    Hazard SE, Patel SB (2007) Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch 453(5):745–752PubMedCrossRefGoogle Scholar
  104. 104.
    Banales JM, Prieto J, Medina JF (2006) Cholangiocyte anion exchange and biliary bicarbonate excretion. WorldJ Gastroenterol 12(22):3496–3511PubMedGoogle Scholar
  105. 105.
    Fickert P, Zollner G, Fuchsbichler A et al (2002) Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 123(4):1238–1251PubMedCrossRefGoogle Scholar
  106. 106.
    Zollner G, Fickert P, Fuchsbichler A et al (2003) Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J Hepatol 39(4):480–488PubMedCrossRefGoogle Scholar
  107. 107.
    Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276(31):28857–28865PubMedCrossRefGoogle Scholar
  108. 108.
    Gerloff T, Stieger B, Hagenbuch B et al (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273(16):10046–10050PubMedCrossRefGoogle Scholar
  109. 109.
    Plass JR, Mol O, Heegsma J et al (2002) Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35(3):589–596PubMedCrossRefGoogle Scholar
  110. 110.
    Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102(6):731–744PubMedCrossRefGoogle Scholar
  111. 111.
    Wagner M, Fickert P, Zollner G et al (2003) Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 125(3):825–838PubMedCrossRefGoogle Scholar
  112. 112.
    Honjo Y, Sasaki S, Kobayashi Y, Misawa H, Nakamura H (2006) 1, 25-dihydroxyvitamin D3 and its receptor inhibit the chenodeoxycholic acid-dependent transactivation by farnesoid X receptor. J Endocrinol 188(3):635–643PubMedCrossRefGoogle Scholar
  113. 113.
    Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A (2003) The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 37(5):1034–1042PubMedCrossRefGoogle Scholar
  114. 114.
    Kast HR, Goodwin B, Tarr PT et al (2001) Regulation of multidrug resistance-associated protein 2 (MRP2;ABCC2) by the nuclear receptors PXR, FXR, and CAR. J Biol Chem 12:12Google Scholar
  115. 115.
    Huang L, Zhao A, Lew JL, et al (2003) Farnesoid X-receptor activates transcription of the phospholipid pump MDR3. J Biol Chem. 2003 Dec 19;278(51):51085–51090Google Scholar
  116. 116.
    Kok T, Bloks VW, Wolters H et al (2003) Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem J 369(3):539–547PubMedCrossRefGoogle Scholar
  117. 117.
    Liu Y, Binz J, Numerick MJ, et al (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest. 2003 Dec;112(11):1678–1687Google Scholar
  118. 118.
    Schuetz EG, Strom S, Yasuda K et al (2001) Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 276(42):39411–39418PubMedCrossRefGoogle Scholar
  119. 119.
    Teng S, Jekerle V, Piquette-Miller M (2003) Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos 31(11):1296–1299PubMedCrossRefGoogle Scholar
  120. 120.
    McCarthy TC, Li X, Sinal CJ (2005) Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 280(24):23232–23242PubMedCrossRefGoogle Scholar
  121. 121.
    Wagner M, Halilbasic E, Marschall HU et al (2005) CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepa­tology 42(2):420–430PubMedCrossRefGoogle Scholar
  122. 122.
    Cherrington NJ, Hartley DP, Li N, Johnson DR, Klaassen CD (2002) Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J Pharmacol Exp Ther 300(1):97–104PubMedCrossRefGoogle Scholar
  123. 123.
    Maher JM, Cheng X, Slitt AL, Dieter MZ, Klaassen CD (2005) Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab Dispos 33(7):956–962PubMedCrossRefGoogle Scholar
  124. 124.
    Zollner G, Wagner M, Moustafa T et al (2006) Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290(5): G923–932CrossRefGoogle Scholar
  125. 125.
    Boyer JL, Trauner M, Mennone A et al (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290(6): G1124–1130CrossRefGoogle Scholar
  126. 126.
    Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA (2006) FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 47(1):201–214PubMedCrossRefGoogle Scholar
  127. 127.
    Baumgartner G, Pusl T (2008) Medical treatment of cholestatic liver disease. Clin Liver Dis 12(1):53–80CrossRefGoogle Scholar
  128. 128.
    Tanaka H, Makino I (1992) Ursodeoxycholic acid-dependent activation of the glucocorticoid receptor. Biochem Biophys Res Commun 188(2):942–948PubMedCrossRefGoogle Scholar
  129. 129.
    Miura T, Ouchida R, Yoshikawa N et al (2001) Functional modulation of the glucocorticoid receptor and suppression of NF-kappaB-dependent transcription by ursodeoxycholic acid. J Biol Chem 276(50):47371–47378PubMedCrossRefGoogle Scholar
  130. 130.
    Pascussi JM, Busson-Le Coniat M, Maurel P, Vilarem MJ (2003) Transcriptional analysis of the orphan nuclear receptor constitutive androstane receptor (NR1I3) gene promoter: identification of a distal glucocorticoid response element. Mol Endocrinol 17(1):42–55PubMedCrossRefGoogle Scholar
  131. 131.
    Bodin K, Bretillon L, Aden Y et al (2001) Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterol in humans: evidence for involvement of cytochrome p450 3A4. J Biol Chem 276(42):38685–38689PubMedCrossRefGoogle Scholar
  132. 132.
    Ellis E, Axelson M, Abrahamsson A et al (2003) Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Hepatology 38(4):930–938PubMedGoogle Scholar
  133. 133.
    Lew JL, Zhao A, Yu J et al (2004) The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J Biol Chem 279(10):8856–8861PubMedCrossRefGoogle Scholar
  134. 134.
    Gerk PM, Li W, Megaraj V, Vore M (2007) Human multidrug resistance protein 2 transports the therapeutic bile salt tauroursodeoxycholate. J Pharmacol Exp Ther 320(2): 893–899PubMedCrossRefGoogle Scholar
  135. 135.
    Paumgartner G, Beuers U (2002) Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36(3):525–531PubMedCrossRefGoogle Scholar
  136. 136.
    Trauner M, Graziadei IW (1999) Review article: mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment Pharmacol Ther 13(8):979–996PubMedCrossRefGoogle Scholar
  137. 137.
    Kast HR, Goodwin B, Tarr PT et al (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277(4):2908–2915PubMedCrossRefGoogle Scholar
  138. 138.
    Yu J, Lo JL, Huang L et al (2002) Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J Biol Chem 277(35):31441–31447PubMedCrossRefGoogle Scholar
  139. 139.
    Claudel T, Sturm E, Kuipers F, Staels B (2004) The farnesoid X receptor: a novel drug target? Expert Opin Investig Drugs 13(9):1135–1148PubMedCrossRefGoogle Scholar
  140. 140.
    Moschetta A, Bookout AL, Mangelsdorf DJ (2004) Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med 10(12):1352–1358PubMedCrossRefGoogle Scholar
  141. 141.
    Grundy SM, Ahrens EH Jr, Salen G (1971) Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J Lab Clin Med 78(1):94–121PubMedGoogle Scholar
  142. 142.
    Heaton KW (1977) Disturbances of bile acid metabolism in intestinal disease. Clin Gastroenterol 6(1):69–89PubMedGoogle Scholar
  143. 143.
    Buchwald H, Varco RL, Matts JP et al (1990) Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 323(14): 946–955PubMedCrossRefGoogle Scholar
  144. 144.
    Shepherd J, Packard CJ, Morgan HG, Third JL, Stewart JM, Lawrie TD (1979) The effects of cholestyramine on high density lipoprotein metabolism. Atherosclerosis 33(4):433–444PubMedCrossRefGoogle Scholar
  145. 145.
    Brensike JF, Levy RI, Kelsey SF et al (1984) Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation 69(2):313–324PubMedGoogle Scholar
  146. 146.
    Levy RI, Brensike JF, Epstein SE et al (1984) The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: results of NHLBI Type II Coronary Intervention Study. Circulation 69(2):325–337PubMedGoogle Scholar
  147. 147.
    Kuriyama M, Tokimura Y, Fujiyama J, Utatsu Y, Osame M (1994) Treatment of cerebrotendinous xanthomatosis: effects of chenodeoxycholic acid, pravastatin, and combined use. J Neurol Sci 125(1):22–28PubMedCrossRefGoogle Scholar
  148. 148.
    Leiss O, von Bergmann K (1982) Different effects of chenodeoxycholic acid and ursodeoxycholic acid on serum lipoprotein concentrations in patients with radiolucent gallstones. Scand J Gastroenterol 17(5):587–592PubMedCrossRefGoogle Scholar
  149. 149.
    Iglesias A, Arranz M, Alvarez JJ et al (1996) Cholesteryl ester transfer activity in liver disease and cholestasis, and its relation with fatty acid composition of lipoprotein lipids. Clin Chim Acta 248(2):157–174PubMedCrossRefGoogle Scholar
  150. 150.
    Claudel T, Sturm E, Duez H et al (2002) Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 109(7):961–971PubMedGoogle Scholar
  151. 151.
    Melter M, Rodeck B, Kardorff R et al (2000) Progressive familial intrahepatic cholestasis: partial biliary diversion normalizes serum lipids and improves growth in noncirrhotic patients. Am J Gastroenterol 95(12):3522–3528PubMedCrossRefGoogle Scholar
  152. 152.
    Albrink MJ, Man EB (1959) Serum triglycerides in coronary artery disease. Archives of Internal Medicine. 103: 4–8Google Scholar
  153. 153.
    Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG (1973) Hyperlipidemia in coronary heart disease II Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52(7):1544–1568PubMedCrossRefGoogle Scholar
  154. 154.
    Brunzell JD, Schrott HG, Motulsky AG, Bierman EL (1976) Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism 25(3):313–320PubMedCrossRefGoogle Scholar
  155. 155.
    Genest JJ Jr, Martin-Munley SS, McNamara JR et al (1992) Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85(6):2025–2033PubMedGoogle Scholar
  156. 156.
    Bateson MC, Maclean D, Evans JR, Bouchier IA (1978) Chenodeoxycholic acid therapy for hypertriglyceridaemia in men. Br J Clin Pharmacol 5(3):249–254PubMedGoogle Scholar
  157. 157.
    Begemann F (1978) Influence of chenodeoxycholic acid on the kinetics of endogenous triglyceride transport in man. Eur J Clin Invest 8(5):283–288PubMedCrossRefGoogle Scholar
  158. 158.
    Camarri E, Fici F, Marcolongo R (1978) Influence of chenodeoxycholic acid on serum triglycerides in patients with primary hypertriglyceridemia. Int J Clin Pharmacol Biopharm 16(11):523–526PubMedGoogle Scholar
  159. 159.
    Camarri E, Marcolongo R, Zaccherotti L, Marini G (1978) The hypotriglyceridemic effect of chenodeoxycholic acid in type IV hyperlipemia. Biomedicine 29(6):193–198PubMedGoogle Scholar
  160. 160.
    Duane WC (1995) Abnormal bile acid absorption in familial hypertriglyceridemia. J Lipid Res 36(1):96–107PubMedGoogle Scholar
  161. 161.
    Duane WC, Hartich LA, Bartman AE, Ho SB (2000) Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J Lipid Res 41(9): 1384–1389PubMedGoogle Scholar
  162. 162.
    Angelin B (1995) 1994 Mack-Forster Award Lecture Review Studies on the regulation of hepatic cholesterol metabolism in humans. Eur J Clin Invest 25(4):215–224PubMedCrossRefGoogle Scholar
  163. 163.
    Angelin B, Einarsson K, Hellstrom K, Leijd B (1978) Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J Lipid Res 19(8):1017–1024PubMedGoogle Scholar
  164. 164.
    Molgaard J, von Schenck H, Olsson AG (1989) Comparative effects of simvastatin and cholestyramine in treatment of patients with hypercholesterolaemia. Eur J Clin Pharmacol 36(5):455–460PubMedCrossRefGoogle Scholar
  165. 165.
    Pullinger CR, Eng C, Salen G et al (2002) Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hyper­cholesterolemic phenotype. J Clin Invest 110(1): 109–117PubMedGoogle Scholar
  166. 166.
    Claudel T, Inoue Y, Barbier O et al (2003) Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125(2):544–555PubMedCrossRefGoogle Scholar
  167. 167.
    Duran-Sandoval D, Mautino G, Martin G et al (2004) Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 53(4):890–898PubMedCrossRefGoogle Scholar
  168. 168.
    DenBesten L, Reyna RH, Connor WE, Stegink LD (1973) The different effects on the serum lipids and fecal steroids of high carbohydrate diets given orally or intravenously.J Clin Invest 52(6):1384–1393PubMedCrossRefGoogle Scholar
  169. 169.
    Stacpoole PW, Grundy SM, Swift LL, Greene HL, Sloni AE, Burr IM (1981) Elevated cholesterol and bile acid synthesis in an adult patient with homozygous familial hypercholesterolemia Reduction by a high glucose diet. J Clin Invest 68(5):1166–1171PubMedCrossRefGoogle Scholar
  170. 170.
    Dawes LG, Laut HC, Woodruff M (2007) Decreased bile acid synthesis with total parenteral nutrition. Am J Surg 194(5):623–627PubMedCrossRefGoogle Scholar
  171. 171.
    Ma K, Saha PK, Chan L, Moore DD (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116(4):1102–1109PubMedCrossRefGoogle Scholar
  172. 172.
    Zhang Y, Lee FY, Barrera G et al (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103(4):1006–1011PubMedCrossRefGoogle Scholar
  173. 173.
    Ludwig J, Viggiano TR, McGill DB, Oh BJ (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55(7): 434–438PubMedGoogle Scholar
  174. 174.
    Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M (2007) Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 30(11):2940–2944PubMedCrossRefGoogle Scholar
  175. 175.
    Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42(1):44–52PubMedCrossRefGoogle Scholar
  176. 176.
    Bedogni G, Miglioli L, Masutti F et al (2007) Incidence and natural course of fatty liver in the general population: the Dionysos study. Hepatology 46(5):1387–1391PubMedCrossRefGoogle Scholar
  177. 177.
    Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37(5):1202–1219PubMedCrossRefGoogle Scholar
  178. 178.
    Adams LA, Lymp JF, St Sauver J et al (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129(1):113–121PubMedCrossRefGoogle Scholar
  179. 179.
    Ekstedt M, Franzen LE, Mathiesen UL et al (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44(4):865–873PubMedCrossRefGoogle Scholar
  180. 180.
    Targher G, Bertolini L, Poli F et al (2005) Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 54(12): 3541–3546PubMedCrossRefGoogle Scholar
  181. 181.
    Huang J, Iqbal J, Saha PK et al (2007) Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology 46(1): 147–157PubMedCrossRefGoogle Scholar
  182. 182.
    Nishigori H, Tomura H, Tonooka N et al (2001) Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc Natl Acad Sci U S A 98(2):575–580PubMedCrossRefGoogle Scholar
  183. 183.
    Echwald SM, Andersen KL, Sorensen TI et al (2004) Mutation analysis of NR0B2 among 1545 Danish men identifies a novel c.278G>A (p.G93D) variant with reduced functional activity. Hum Mutat 24(5):381–387PubMedCrossRefGoogle Scholar
  184. 184.
    Hung CC, Farooqi IS, Ong K et al (2003) Contribution of variants in the small heterodimer partner gene to birthweight, adiposity, and insulin levels: mutational analysis and association studies in multiple populations. Diabetes 52(5):1288–1291PubMedCrossRefGoogle Scholar
  185. 185.
    Mitchell SM, Weedon MN, Owen KR et al (2003) Genetic variation in the small heterodimer partner gene and young-onset type 2 diabetes, obesity, and birth weight in U.K. subjects. Diabetes 52(5):1276–1279PubMedCrossRefGoogle Scholar
  186. 186.
    Maruyama T, Tanaka K, Suzuki J et al (2006) Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 191(1):197–205PubMedCrossRefGoogle Scholar
  187. 187.
    Vassileva G, Golovko A, Markowitz L et al (2006) Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J 398(3):423–430PubMedCrossRefGoogle Scholar
  188. 188.
    Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075): 484–489PubMedCrossRefGoogle Scholar
  189. 189.
    Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci (Lond) 71(3): 291–297Google Scholar
  190. 190.
    Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W (1997) Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res 38(10):2125–2133PubMedGoogle Scholar
  191. 191.
    Huttunen P, Hirvonen J, Kinnula V (1981) The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol Occup Physiol 46(4):339–345PubMedCrossRefGoogle Scholar
  192. 192.
    Zancanaro C, Pelosi G, Accordini C, Balercia G, Sbabo L, Cinti S (1994) Immunohistochemical identification of the uncou­­pling protein in human hibernoma. Biol Cell 80(1): 75–78PubMedCrossRefGoogle Scholar
  193. 193.
    Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue in patients with phaeochromocytoma. Int J Obes 10(3):219–227PubMedGoogle Scholar
  194. 194.
    Ricquier D, Nechad M, Mory G (1982) Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J Clin Endocrinol Metab 54(4): 803–807PubMedCrossRefGoogle Scholar
  195. 195.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1): 277–359PubMedCrossRefGoogle Scholar
  196. 196.
    Yoshimura T, Kurita C, Nagao T et al (1997) Inhibition of tumor necrosis factor-alpha and interleukin-1-beta production by beta-adrenoceptor agonists from lipopolysaccharide-stimulated human peripheral blood mononuclear cells. Pharmacology 54(3):144–152PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal MedicineMedical University, GrazGrazAustria

Personalised recommendations