Signaling Pathways in Biliary Epithelial Cells

  • M. Fatima Leite
  • Viviane A. Andrade
  • Michael H. NathansonEmail author


Biliary epithelial cells, or cholangiocytes, line the lumen of the biliary tree. Like hepatocytes, cholangiocytes are a polarized epithelium with structural features that include well-defined apical and basolateral membrane domains. Cholangiocytes constitute approximately 5% of the mass of the liver and play an important role in the formation of bile by altering primary canalicular bile through a series of secretory and reabsorptive events. These events are regulated by peptide hormones, nucleotides, bile salts, growth factors, cytokines, and neurotransmitters that bind to and stimulate specific apical or basolateral surface membrane receptors, which in turn initiate intracellular signal transduction pathways that regulate cell function. In addition to their role in the modification of ductal bile, cholangiocytes participate in the detoxification of xenobiotics [1].


Bile Duct Bile Acid Cystic Fibrosis Transmembrane Conductance Regulator Biliary Atresia Primary Cilium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH grants TW01451, DK61747, DK45710, DK34989, and DK57751 and by a grant from the Howard Hughes Medical Institute.


  1. 1.
    Wise C, Pilanthananond M, Perry BF, Alpini G, McNeal M, Glaser SS (2008) Mechanisms of biliary carcinogenesis and growth. World J Gastroenterol 14:2986–2989PubMedCrossRefGoogle Scholar
  2. 2.
    Gaudio E, Franchitto A, Pannarale L, Carpino G, Alpini G, Francis H, Glaser S, Alvaro D, Onori P (2006) Cholangiocytes and blood supply. World J Gastroenterol 12:3546–3552PubMedGoogle Scholar
  3. 3.
    Bogert PT, LaRusso NF (2007) Cholangiocyte biology. Curr Opin Gastroenterol 23:299–305PubMedCrossRefGoogle Scholar
  4. 4.
    Francis H, LeSage G, DeMorrow S, Alvaro D, Ueno Y, Venter J, Glaser S, Mancino MG, Marucci L, Benedetti A, Alpini G (2007) The alpha2-adrenergic receptor agonist UK 14, 304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. Am J Physiol Cell Physiol 293:C1252–C1262CrossRefGoogle Scholar
  5. 5.
    DeMorrow S, Francis H, Alpini G (2007) Biogenic amine actions on cholangiocyte function. Exp Biol Med (Maywood) 232:1005–1013CrossRefGoogle Scholar
  6. 6.
    Francis H, Glaser S, DeMorrow S, Gaudio E, Ueno Y, Venter J, Dostal D, Onori P, Franchitto A, Marzioni M, Vaculin S, Vaculin B, Katki K, Stutes M, Savage J, Alpini G (2008) Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol Cell Physiol 295:C499–C513CrossRefGoogle Scholar
  7. 7.
    Francis H, Franchitto A, Ueno Y, Glaser S, DeMorrow S, Venter J, Gaudio E, Alvaro D, Fava G, Marzioni M, Vaculin B, Alpini G (2007) H3 histamine receptor agonist inhibits biliary growth of BDL rats by downregulation of the cAMP-dependent PKA/ERK1/2/ELK-1 pathway. Lab Invest 87:473–487PubMedGoogle Scholar
  8. 8.
    Jimenez W (2005) Endocannabinoids and liver disease. Hepatology 41:983–985PubMedCrossRefGoogle Scholar
  9. 9.
    DeMorrow S, Francis H, Gaudio E, Ueno Y, Venter J, Onori P, Franchitto A, Vaculin B, Vaculin S, Alpini G (2008) Anandamide inhibits cholangiocyte hyperplastic proliferation via activation of thioredoxin 1/redox factor 1 and AP-1 activation. Am J Physiol Gastrointest Liver Physiol 294: G506–G519CrossRefGoogle Scholar
  10. 10.
    Vaillancourt RR, Gardner AM, Johnson GL (1994) B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Mol Cell Biol 14:6522–6530PubMedGoogle Scholar
  11. 11.
    Hagemann C, Rapp UR (1999) Isotype-specific functions of Raf kinases. Exp Cell Res 253:34–46PubMedCrossRefGoogle Scholar
  12. 12.
    Moodie SA, Willumsen BM, Weber MJ, Wolfman A (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260:1658–1661PubMedCrossRefGoogle Scholar
  13. 13.
    Vojtek AB, Der CJ (1998) Increasing complexity of the Ras signaling pathway. J Biol Chem 273:19925–19928PubMedCrossRefGoogle Scholar
  14. 14.
    Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44PubMedCrossRefGoogle Scholar
  15. 15.
    Hafner S, Adler HS, Mischak H, Janosch P, Heidecker G, Wolfman A, Pippig S, Lohse M, Ueffing M, Kolch W (1994) Mechanism of inhibition of Raf-1 by protein kinase A. Mol Cell Biol 14:6696–6703PubMedGoogle Scholar
  16. 16.
    Kanno N, LeSage G, Phinizy JL, Glaser S, Francis H, Alpini G (2002) Stimulation of alpha2-adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. Hepatology 35:1329–1340PubMedCrossRefGoogle Scholar
  17. 17.
    Leelawat K, Leelawat S, Narong S, Hongeng S (2007) Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J Gastroenterol 13:1561–1568PubMedGoogle Scholar
  18. 18.
    Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ (2005) Interleukin-6 contributes to Mcl-1 up-­regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128: 2054–2065PubMedCrossRefGoogle Scholar
  19. 19.
    Werneburg NW, Yoon JH, Higuchi H, Gores GJ (2003) Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines. Am J Physiol Gastrointest Liver Physiol 285:G31–G36Google Scholar
  20. 20.
    Drudi MV, Mancino MG, Mancino A, Torrice A, Gatto M, Attili AF, Alpini G, Alvaro D (2007) Bile salts regulate proliferation and apoptosis of liver cells by modulating the IGF1 system. Dig Liver Dis 39:654–662CrossRefGoogle Scholar
  21. 21.
    Higuchi H, Grambihler A, Canbay A, Bronk SF, Gores GJ (2004) Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1. J Biol Chem 279:51–60PubMedCrossRefGoogle Scholar
  22. 22.
    Bijvelds MJ, Jorna H, Verkade HJ, Bot AG, Hofmann F, Agellon LB, Sinaasappel M, De Jonge HR (2005) Activa-tion of CFTR by ASBT-mediated bile salt absorption. Am J Physiol Gastrointest Liver Physiol 289:G870–G879CrossRefGoogle Scholar
  23. 23.
    Alpini G, Glaser SS, Robertson WE, Phinizy JL, Rodgers R, Caligiuri A, LeSage GD (1997) Bile acids stimulate proliferative and secretory events in large but not small cholangiocytes. Am J Physiol Gastrointest Liver Physiol 273:G518–G529Google Scholar
  24. 24.
    Alvaro D, Alpini G, Onori P, Perego L, Svegliata BG, Franchitto A, Baiocchi L, Glaser SS, Le Sage G, Folli F, Gaudio E (2000) Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats. Gastroenterology 119: 1681–1691PubMedCrossRefGoogle Scholar
  25. 25.
    Alvaro D, Barbaro B, Franchitto A, Onori P, Glaser SS, Alpini G, Francis H, Marucci L, Sterpetti P, Ginanni-Corradini S, Onetti MA, Dostal DE, De Santis A, Attili AF, Benedetti A, Gaudio E (2006) Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am J Pathol 169:877–888PubMedCrossRefGoogle Scholar
  26. 26.
    Mancino A, Mancino MG, Glaser SS, Alpini G, Bolognese A, Izzo L, Francis H, Onori P, Franchitto A, Ginanni-Corradini S, Gaudio E, Alvaro D (2008) Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig Liver Dis 41:156–163PubMedCrossRefGoogle Scholar
  27. 27.
    Kato A, Gores GJ, LaRusso NF (1992) Secretin stimulates exocytosis in isolated bile duct epithelial cells by a cyclic AMP-mediated mechanism. J Biol Chem 267:15523–15529PubMedGoogle Scholar
  28. 28.
    Marinelli RA, Pham L, Agre P, LaRusso NF (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 272:12984–12988PubMedCrossRefGoogle Scholar
  29. 29.
    Roberts SK, Yano M, Ueno Y, Pham L, Alpini G, Agre P, LaRusso NF (1994) Cholangiocytes express the aquaporin CHIP and transport water via a channel-mediated mechanism. Proc Natl Acad Sci USA 91:13009–13013PubMedCrossRefGoogle Scholar
  30. 30.
    Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG (1993) Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology 105:1857–1864PubMedGoogle Scholar
  31. 31.
    Fitz JG, Basavappa S, McGill J, Melhus O, Cohn JA (1993) Regulation of membrane chloride currents in rat bile duct epithelial cells. J Clin Invest 91:319–328PubMedCrossRefGoogle Scholar
  32. 32.
    Alvaro D, Cho WK, Mennone A, Boyer JL (1993) Effect of secretin on intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest 92:1314–1325PubMedCrossRefGoogle Scholar
  33. 33.
    Boyer JL (1996) Bile duct epithelium: frontiers in transport physiology. Am J Physiol Gastrointest Liver Physiol 270: G1–G5Google Scholar
  34. 34.
    Mennone A, Alvaro D, Cho W, Boyer JL (1995) Isolation of small polarized bile duct units. Proc Natl Acad Sci USA 92:6527–6531PubMedCrossRefGoogle Scholar
  35. 35.
    Roberts SK, Kuntz SM, Gores GJ, LaRusso NF (1993) Regulation of bicarbonate-dependent ductular bile secretion assessed by lumenal micropuncture of isolated rodent ­intrahepatic bile ducts. Proc Natl Acad Sci U S A 90:9080–9084PubMedCrossRefGoogle Scholar
  36. 36.
    Hirata K, Nathanson MH (2001) Bile duct epithelia regulate biliary bicarbonate excretion in normal rat liver. Gastroen­terology 121:396–406PubMedCrossRefGoogle Scholar
  37. 37.
    Alpini G, Lenzi R, Zhai WR, Slott PA, Liu MH, Sarkozi L, Tavoloni N (1989) Bile secretory function of intrahepatic biliary epithelium in the rat. Am J Physiol Gastrointest Liver Physiol 257:G124–G133Google Scholar
  38. 38.
    Alpini G, Ulrich CD II, Phillips JO, Pham LD, Miller LJ, LaRusso NF (1994) Upregulation of secretin receptor gene expression in rat cholangiocytes after bile duct ligation. Am J Physiol Gastrointest Liver Physiol 266:G922–G928Google Scholar
  39. 39.
    Lenzen R, Alpini G, Tavoloni N (1992) Secretin stimulates bile ductular secretory activity through the cAMP system. Am J Physiol Gastrointest Liver Physiol 263:G527–G532Google Scholar
  40. 40.
    Nathanson MH, Burgstahler AD, Mennone A, Boyer JL (1996) Characterization of cytosolic Ca2+ signaling in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 271:G86–G96Google Scholar
  41. 41.
    McGill JM, Basavappa S, Gettys TW, Fitz JG (1994) Secretin activates Cl- channels in bile duct epithelial cells through a cAMP-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 266:G731–G736Google Scholar
  42. 42.
    Roberts SK, Ludwig J, LaRusso NF (1997) The pathobiology of biliary epithelia. Gastroenterology 112:269–279PubMedCrossRefGoogle Scholar
  43. 43.
    Lee MG, Choi JY, Luo X, Strickland E, Thomas PJ, Muallem S (1999) Cystic fibrosis transmembrane conductance regulator regulates luminal Cl-/HCO3- exchange in mouse submandibular and pancreatic ducts. J Biol Chem 274:14670–14677PubMedCrossRefGoogle Scholar
  44. 44.
    Lee MG, Wigley WC, Zeng W, Noel LE, Marino CM, Thomas PJ, Muallem S (1999) Regulation of Cl-/ HCO3- exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J Biol Chem 274:3414–3421PubMedCrossRefGoogle Scholar
  45. 45.
    Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91:5340–5344PubMedCrossRefGoogle Scholar
  46. 46.
    Seidler U, Blumenstein I, Kretz A, Viellard-Baron D, Rossmann H, Colledge WH, Evans M, Ratcliff R, Gregor M (1997) A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca(2+)-dependent. J Physiol 505(Pt 2):411–423PubMedCrossRefGoogle Scholar
  47. 47.
    Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, LeSage G, Akiba Y, Kaunitz JD, Ehrlich BE, LaRusso NF, Nathanson MH (2007) Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology 133:1592–1602PubMedCrossRefGoogle Scholar
  48. 48.
    Tietz PS, Marinelli RA, Chen XM, Huang B, Cohn J, Kole J, McNiven MA, Alper S, LaRusso NF (2003) Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J Biol Chem 278:20413–20419PubMedCrossRefGoogle Scholar
  49. 49.
    Tietz PS, Holman RT, Miller LJ, LaRusso NF (1995) Isolation and characterization of rat cholangiocyte vesicles enriched in apical or basolateral plasma membrane domains. Biochemistry 34:15436–15443PubMedCrossRefGoogle Scholar
  50. 50.
    Gong AY, Tietz PS, Muff MA, Splinter PL, Huebert RC, Strowski MZ, Chen XM, LaRusso NF (2003) Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. Am J Physiol Cell Physiol 284:C1205–C1214Google Scholar
  51. 51.
    Alpini G, Glaser SS, Ueno Y, Pham L, Podila PV, Caligiuri A, LeSage G, LaRusso NF (1998) Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. Am J Physiol Gastrointest Liver Physiol 274:G767–G775Google Scholar
  52. 52.
    Caligiuri A, Glaser S, Rodgers RE, Phinizy JL, Robertson W, Papa E, Pinzani M, Alpini G (1998) Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes. Am J Physiol Gastrointest Liver Physiol 275:G835–G846Google Scholar
  53. 53.
    Glaser SS, Rodgers RE, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD, Alpini G (1997) Gastrin inhibits secretin-induced ductal secretion by interaction with specific receptors on rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol 273: G1061–G1070Google Scholar
  54. 54.
    Marzioni M, Glaser S, Francis H, Marucci L, Benedetti A, Alvaro D, Taffetani S, Ueno Y, Roskams T, Phinizy JL, Venter J, Fava G, LeSage GD, Alpini G (2005) Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology 128:121–137PubMedCrossRefGoogle Scholar
  55. 55.
    Cho WK, Boyer JL (1999) Vasoactive intestinal polypeptide is a potent regulator of bile secretion from rat cholangiocytes. Gastroenterology 117:420–428PubMedCrossRefGoogle Scholar
  56. 56.
    Cho WK, Mennone A, Rydberg SA, Boyer JL (1997) Bombesin stimulates bicarbonate secretion from rat cholangiocytes: implications for neural regulation of bile secretion. Gastroenterology 113:311–321PubMedCrossRefGoogle Scholar
  57. 57.
    Roman RM, Feranchak AP, Salter KD, Wang Y, Fitz JG (1999) Endogenous ATP release regulates Cl- secretion in cultured human and rat biliary epithelial cells. Am J Physiol Gastrointest Liver Physiol 276:G1391–G1400Google Scholar
  58. 58.
    Fitz JG (2002) Regulation of cholangiocyte secretion. Semin Liver Dis 22:241–249PubMedCrossRefGoogle Scholar
  59. 59.
    Newton CL, Mignery GA, SÅdhof TC (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1, 4, 5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269:28613–28619PubMedGoogle Scholar
  60. 60.
    Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE (1998) Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 396:81–84PubMedCrossRefGoogle Scholar
  61. 61.
    Ramos-Franco J, Fill M, Mignery GA (1998) Isoform-specific function of single inositol 1, 4, 5-trisphosphate receptor channels. Biophys J 75:834–839PubMedCrossRefGoogle Scholar
  62. 62.
    Anyatonwu GI, Buck ED, Ehrlich BE (2003) Methane­thiosulfonate ethylammonium block of amine currents through the ryanodine receptor reveals single pore architecture. J Biol Chem 278:45528–45538PubMedCrossRefGoogle Scholar
  63. 63.
    Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, Yoo SH (2003) A functional interaction between chromogranin B and the inositol 1, 4, 5-trisphosphate receptor/Ca2+ channel. J Biol Chem 278:49699–49706PubMedCrossRefGoogle Scholar
  64. 64.
    Libbrecht L, Desmet V, Van Damme B, Roskams T (2000) The immunohistochemical phenotype of dysplastic foci in human liver: correlation with putative progenitor cells. J Hepatol 33:76–84PubMedCrossRefGoogle Scholar
  65. 65.
    Hirata K, Dufour JF, Shibao K, Knickelbein R, O’Neill AF, Bode HP, Cassio D, St-Pierre MV, LaRusso NF, Leite MF, Nathanson MH (2002) Regulation of Ca(2+) signaling in rat bile duct epithelia by inositol 1, 4, 5-trisphosphate receptor isoforms. Hepatology 36:284–296PubMedCrossRefGoogle Scholar
  66. 66.
    Dufour J-F, Luthi M, Forestier M, Magnoni F (1999) Expression of insp3r isoforms in rat cirrhosis. Hepatology 30:1018–1026PubMedCrossRefGoogle Scholar
  67. 67.
    Bennett DL, Cheek TR, Berridge MJ, De Smedt H, Parys JB, Missiaen L, Bootman MD (1996) Expression and function of ryanodine receptors in nonexcitable cells. J Biol Chem 271:6356–6362PubMedCrossRefGoogle Scholar
  68. 68.
    Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128: 893–904PubMedCrossRefGoogle Scholar
  69. 69.
    Leite MF, Dranoff JA, Gao L, Nathanson MH (1999) Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem J 337(Pt 2): 305–309PubMedCrossRefGoogle Scholar
  70. 70.
    Verma V, Carter C, Keable S, Bennett D, Thorn P (1996) Identification and function of type-2 and type-3 ryanodine receptors in gut epithelial cells. Biochem J 319:449–454PubMedGoogle Scholar
  71. 71.
    Meszaros LG, Bak J, Chu A (1993) Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364:76–79PubMedCrossRefGoogle Scholar
  72. 72.
    Sonnleitner A, Conti A, Bertocchini F, Schindler H, Sorrentino V (1998) Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J 17:2790–2798PubMedCrossRefGoogle Scholar
  73. 73.
    Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392:936–941PubMedCrossRefGoogle Scholar
  74. 74.
    Hirata K, Nathanson MH, Burgstahler AD, Okazaki K, Mattei E, Sears ML (1999) Relationship between inositol 1, 4, 5-trisphosphate receptor isoforms and subcellular Ca2+ signaling patterns in nonpigmented ciliary epithelia. Invest Ophthalmol Vis Sci 40:2046–2053PubMedGoogle Scholar
  75. 75.
    Nathanson MH, Fallon MB, Padfield PJ, Maranto AR (1994) Localization of the type 3 inositol 1, 4, 5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J Biol Chem 269:4693–4696PubMedGoogle Scholar
  76. 76.
    Leite MF, Hirata K, Pusl T, Burgstahler AD, Okazaki K, Ortega JM, Goes AM, Prado MAM, Spray DC, Nathanson MH (2002) Molecular basis for pacemaker cells in epithelia. J Biol Chem 277:16313–16323PubMedCrossRefGoogle Scholar
  77. 77.
    Bode HP, Wang L, Cassio D, Leite MF, St-Pierre MV, Hirata K, Okazaki K, Sears ML, Meda P, Nathanson MH, Dufour JF (2002) Expression and regulation of gap junctions in rat cholangiocytes. Hepatology 36:631–640PubMedCrossRefGoogle Scholar
  78. 78.
    Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348:735–738PubMedCrossRefGoogle Scholar
  79. 79.
    Ito K, Miyashita Y, Kasai H (1997) Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J 16:242–251PubMedCrossRefGoogle Scholar
  80. 80.
    Fernandez-Chacon R, Konigstorfer A, Gerber S, Garcia J, Matos M, Stevens C, Brose N, Rizo J, Rosenmund C, Sudhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49PubMedCrossRefGoogle Scholar
  81. 81.
    Boyer JL, Soroka CJ (1995) Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. Gastroenterology 109:1600–1611PubMedCrossRefGoogle Scholar
  82. 82.
    Tietz PS, Alpini G, Pham LD, LaRusso NF (1995) Soma­tostatin inhibits secretin-induced ductal hypercholeresis and exocytosis by cholangiocytes. Am J Physiol Gastrointest Liver Physiol 269:G110–G118Google Scholar
  83. 83.
    McGill J, Basavappa S, Mangel AW, Shimokura GH, Middleton JP, Fitz JG (1994) Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology 107:236–243PubMedGoogle Scholar
  84. 84.
    Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH (2001) Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 281:G1059–G1067Google Scholar
  85. 85.
    Alvaro D, Alpini G, Jezequel AM, Bassotti C, Francia C, Fraioli F, Romeo R, Marucci L, LeSage G, Glaser SS, Benedetti A (1997) Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory function. J Clin Invest 100:1349–1362PubMedCrossRefGoogle Scholar
  86. 86.
    LeSage GD, Alvaro D, Benedetti A, Glaser S, Marucci L, Baiocchi L, Eisel W, Caligiuri A, Phinizy J, Rodgers R, Francis H, Alpini G (1999) Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology 117:191–199PubMedCrossRefGoogle Scholar
  87. 87.
    Taylor AL, Schwiebert LM, Smith JJ, King C, Jones JR, Sorscher EJ, Schwiebert EM (1999) Epithelial P2X purinergic receptor channel expression and function. J Clin Invest 104:875–884PubMedCrossRefGoogle Scholar
  88. 88.
    Basavappa S, Middleton J, Mangel AW, McGill JM, Cohn JA, Fitz JG (1993) Cl- and K+ transport in human biliary cell lines. Gastroenterology 104:1796–1805PubMedGoogle Scholar
  89. 89.
    Salter KD, Fitz JG, Roman RM (2000) Domain-specific purinergic signaling in polarized rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol 278:G492–G500Google Scholar
  90. 90.
    Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Vaillant N, Gadeau AP, Desgranges C, Scalbert E, Chardin P, Pacaud P, Loirand G (2000) P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptors are coupled to Rho and Rho kinase activation in vascular myocytes. Am J Physiol Heart Circ Physiol 278: H1751–H1761Google Scholar
  91. 91.
    Schlosser SF, Burgstahler AD, Nathanson MH (1996) Isolated rat hepatocytes can signal to nearby hepatocytes and bile duct cells by secretion of nucleotides. Gastroenterology 110:A1315Google Scholar
  92. 92.
    Chari RS, Schutz SM, Haebig JE, Shimokura GH, Cotton PB, Fitz JG, Meyers WC (1996) Adenosine nucleotides in bile. Am J Physiol Gastrointest Liver Physiol 270:G246–G252Google Scholar
  93. 93.
    Nathanson MH, Burgstahler AD, Masyuk AI, LaRusso NF (2001) Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J 358:1–5PubMedCrossRefGoogle Scholar
  94. 94.
    Dranoff JA, Kruglov EA, Robson SC, Braun N, Zimmermann H, Sevigny J (2002) The ecto-nucleoside triphosphate diphos­phohydrolase NTPDase2/CD39L1 is expressed in a novel ­functional compartment within the liver. Hepatology 36:1135–1144PubMedCrossRefGoogle Scholar
  95. 95.
    Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, LaRusso NF (2007) Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 104:19138–19143PubMedCrossRefGoogle Scholar
  96. 96.
    Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ, LaRusso NF (2008) Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic ­receptors. Am J Physiol Gastrointest Liver Physiol 295:G725–G734CrossRefGoogle Scholar
  97. 97.
    Glaser S, Alvaro D, Roskams T, Phinizy JL, Stoica G, Francis H, Ueno Y, Barbaro B, Marzioni M, Mauldin J, Rashid S, Mancino MG, LeSage G, Alpini G (2003) Dopaminergic inhibition of secretin-stimulated choleresis by increased PKC-gamma expression and decrease of PKA activity. Am J Physiol Gastrointest Liver Physiol 284: G683–G694Google Scholar
  98. 98.
    Minagawa N, Kruglov EA, Dranoff JA, Robert ME, Gores GJ, Nathanson MH (2005) The anti-apoptotic protein Mcl-1 inhibits mitochondrial Ca2+ signals. J Biol Chem 280:33637–33644PubMedCrossRefGoogle Scholar
  99. 99.
    Harnois DM, Que FG, Celli A, LaRusso NF, Gores GJ (1997) Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatology 26:884–890PubMedCrossRefGoogle Scholar
  100. 100.
    Nishizuka Y (1992) Membrane phospholipid degradation and protein kinase C for cell signalling. Neurosci Res 15:3–5PubMedCrossRefGoogle Scholar
  101. 101.
    Alpini G, Baiocchi L, Glaser S, Ueno Y, Marzioni M, Francis H, Phinizy JL, Angelico M, LeSage G (2002) Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology 35:1041–1052PubMedCrossRefGoogle Scholar
  102. 102.
    LeSage GD, Alvaro D, Glaser S, Francis H, Marucci L, Roskams T, Phinizy JL, Marzioni M, Benedetti A, Taffetani S, Barbaro B, Fava G, Ueno Y, Alpini G (2004) Alpha-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca(2+)- and PKC-dependent stimulation of cAMP. Hepatology 40:1116–1127PubMedCrossRefGoogle Scholar
  103. 103.
    Taffetani S, Glaser S, Francis H, DeMorrow S, Ueno Y, Alvaro D, Marucci L, Marzioni M, Fava G, Venter J, Vaculin S, Vaculin B, Lam IP, Lee VH, Gaudio E, Carpino G, Benedetti A, Alpini G (2007) Prolactin stimulates the proliferation of normal female cholangiocytes by differential regulation of Ca2+-dependent PKC isoforms. BMC Physiol 7:6PubMedCrossRefGoogle Scholar
  104. 104.
    Glaser S, DeMorrow S, Francis H, Ueno Y, Gaudio E, Vaculin S, Venter J, Franchitto A, Onori P, Vaculin B, Marzioni M, Wise C, Pilanthananond M, Savage J, Pierce L, Mancinelli R, Alpini G (2008) Progesterone stimulates the proliferation of female and male cholangiocytes via autocrine/paracrine mechanisms. Am J Physiol Gastrointest Liver Physiol 295:G124–G136CrossRefGoogle Scholar
  105. 105.
    Wang L, Piguet A-C, Tordjmann T, Dufour J-F (2005) Activation of CREB by TUDCA protects cholangiocytes from apoptosis induced by mTOR inhibition. Hepatology 41:1241–1251PubMedCrossRefGoogle Scholar
  106. 106.
    Berthiaume EP, Wands J (2004) The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis 24:127–137PubMedCrossRefGoogle Scholar
  107. 107.
    Park J, Gores GJ, Patel T (1999) Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated activation of p44/p42 mitogen-activated protein kinase. Hepatology 29:1037–1043PubMedCrossRefGoogle Scholar
  108. 108.
    Yamagiwa Y, Marienfeld C, Tadlock L, Patel T (2003) Translational regulation by p38 mitogen-activated protein kinase signaling during human cholangiocarcinoma growth. Hepatology 38:158–166PubMedCrossRefGoogle Scholar
  109. 109.
    Isomoto H, Kobayashi S, Werneburg NW, Bronk SF, Guicciardi ME, Frank DA, Gores GJ (2005) Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology 42:1329–1338PubMedCrossRefGoogle Scholar
  110. 110.
    Ishimura N, Bronk SF, Gores GJ (2005) Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology 128:1354–1368PubMedCrossRefGoogle Scholar
  111. 111.
    Schmitz KJ, Lang H, Wohlschlaeger J, Sotiropoulos GC, Reis H, Schmid KW, Baba HA (2007) AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma. World J Gastroenterol 13:6470–6477PubMedCrossRefGoogle Scholar
  112. 112.
    Folli F, Alvaro D, Gigliozzi A, Bassotti C, Kahn CR, Pontiroli AE, Capocaccia L, Jezequel AM, Benedetti A (1997) Regulation of endocytic-transcytotic pathways and bile secretion by phosphatidylinositol 3-kinase in rats. Gastroenterology 113:954–965PubMedCrossRefGoogle Scholar
  113. 113.
    Misra S, Ujhazy P, Varticovski L, Arias IM (1999) Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci U S A 96:5814–5819PubMedCrossRefGoogle Scholar
  114. 114.
    Rust C, Karnitz LM, Paya CV, Moscat J, Simari RD, Gores GJ (2000) The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 275:20210–20216PubMedCrossRefGoogle Scholar
  115. 115.
    Alpini G, Glaser S, Alvaro D, Ueno Y, Marzioni M, Francis H, Baiocchi L, Stati T, Barbaro B, Phinizy JL, Mauldin J, LeSage G (2002) Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase-dependent pathway in rats. Gastroenterology 123:1226–1237PubMedCrossRefGoogle Scholar
  116. 116.
    Marzioni M, Alpini G, Saccomanno S, Candelaresi C, Venter J, Rychlicki C, Fava G, Francis H, Trozzi L, Glaser S, Benedetti A (2007) Glucagon-like peptide-1 and its receptor agonist exendin-4 modulate cholangiocyte adaptive response to cholestasis. Gastroenterology 133:244–255PubMedCrossRefGoogle Scholar
  117. 117.
    Feranchak AP, Roman RM, Doctor RB, Salter KD, Toker A, Fitz JG (1999) The lipid products of phosphoinositide 3-kinase contribute to regulation of cholangiocyte ATP and chloride transport. J Biol Chem 274:30979–30986PubMedCrossRefGoogle Scholar
  118. 118.
    Shibao K, Hirata K, Robert ME, Nathanson MH (2003) Loss of inositol 1, 4, 5-trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Gastroenterology 125:1175–1187PubMedCrossRefGoogle Scholar
  119. 119.
    Beuers U, Boyer JL, Paumgartner G (1998) Ursodeoxycholic acid in cholestasis: potential mechanisms of action and therapeutic applications. Hepatology 28:1449–1453PubMedCrossRefGoogle Scholar
  120. 120.
    Poupon RE, Poupon R, Balkau B (1994) Ursodiol for the long-term treatment of primary biliary cirrhosis. N Engl J Med 330:1342–1347PubMedCrossRefGoogle Scholar
  121. 121.
    Fiorotto R, Spirli C, Fabris L, Cadamuro M, Okolicsanyi L, Strazzabosco M (2007) Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion. Gastroenterology 133:1603–1613PubMedCrossRefGoogle Scholar
  122. 122.
    Nathanson MH, Burgstahler AD, Mennone A, Dranoff JA, Rios-Velez L (1998) Stimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver. J Clin Invest 101:2665–2676PubMedCrossRefGoogle Scholar
  123. 123.
    Alpini G, Lenzi R, Sarkozi L, Tavoloni N (1988) Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules. J Clin Invest 81:569–578PubMedCrossRefGoogle Scholar
  124. 124.
    LeSage G, Glaser SS, Gubba S, Robertson WE, Phinizy JL, Lasater J, Rodgers RE, Alpini G (1996) Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology 111:1633–1644PubMedCrossRefGoogle Scholar
  125. 125.
    Alpini G, Glaser SS, Ueno Y, Rodgers R, Phinizy JL, Francis H, Baiocchi L, Holcomb LA, Caligiuri A, LeSage GD (1999) Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Gastroenterology 116:179–186PubMedCrossRefGoogle Scholar
  126. 126.
    LeSage G, Glaser S, Alpini G (2001) Regulation of cholangiocyte proliferation. Liver 21:73–80PubMedCrossRefGoogle Scholar
  127. 127.
    Kanno N, LeSage G, Glaser S, Alpini G (2001) Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 281:G612–G625Google Scholar
  128. 128.
    Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 9:1539–1544PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Fatima Leite
    • 1
  • Viviane A. Andrade
    • 1
  • Michael H. Nathanson
    • 1
    Email author
  1. 1.Department of MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations