Advertisement

AMP-Activated Protein Kinase in Liver

  • Louis HueEmail author
  • Laurent Bultot
  • Mark H. Rider
Chapter

Abstract

The AMP-activated protein kinase (AMPK) has become an inescapable topic in metabolic disorders. AMPK is a highly conserved eukaryotic protein serine/threonine kinase, which is involved in energy homeostasis both at the cellular and whole-body levels [1–3]. It mediates a nutrient signaling pathway that senses the energy status of the cell and is activated by energy imbalance as a result of decreased ATP production (hypoxia) or increased ATP consumption (muscle contraction). Liver AMPK activity is also modulated by cytokines that regulates whole-body energy homeostasis. At the cellular level, AMPK restores energy charge by switching off anabolic ATP-consuming pathways, while switching on catabolic ATP-generating pathways. It also plays a critical role in systemic energy homeostasis by controlling food intake in the hypothalamus [1–3]. Therefore, AMPK orchestrates a global metabolic response to energy deprivation and can be regarded as a starvation signal. This short article reviews the conditions and consequences of AMPK activation in liver and the potential implication of AMPK in liver diseases.

Keywords

Energy Homeostasis AMPK Activation Hepatic Glucose Production mTORC1 Signaling AMPK Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work carried out in the authors’ laboratory was supported by the Belgian Fund for Medical Scien­tific Research, the Interuniversity Poles of Attraction Belgian Science Policy , the French Community of Belgium (Actions de Recherche Concertées) and the EXGENESIS Integrated Project (LSHM-CT-2004-005272) from the European Commission.

References

  1. 1.
    Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785CrossRefPubMedGoogle Scholar
  2. 2.
    Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855CrossRefPubMedGoogle Scholar
  3. 3.
    Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25CrossRefPubMedGoogle Scholar
  4. 4.
    Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346:659–669CrossRefPubMedGoogle Scholar
  5. 5.
    Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–500CrossRefPubMedGoogle Scholar
  6. 6.
    Witters LA, Kemp BE, Means AR (2006) Chutes and Ladders: the search for protein kinases that act on AMPK. Trends Biochem Sci 31:13–16CrossRefPubMedGoogle Scholar
  7. 7.
    Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403:139–148CrossRefPubMedGoogle Scholar
  8. 8.
    Hue L, Rider MH (2007) The AMP-activated protein kinase: more than an energy sensor. Essays Biochem 43:121–137CrossRefPubMedGoogle Scholar
  9. 9.
    Momcilovic M, Hong SP, Carlson M (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281:25336–25343CrossRefPubMedGoogle Scholar
  10. 10.
    Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC, Courtoy PJ, Rousseau GG, Lemaigre FP (2005) Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 19:1849–1854CrossRefPubMedGoogle Scholar
  11. 11.
    Hardie DG (2007) AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47:185–210CrossRefPubMedGoogle Scholar
  12. 12.
    Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–E304Google Scholar
  13. 13.
    Assifi MM, Suchankova G, Constant S, Prentki M, Saha AK, Ruderman NB (2005) AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am J Physiol Endocrinol Metab 289:E794–E800CrossRefGoogle Scholar
  14. 14.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295CrossRefPubMedGoogle Scholar
  15. 15.
    Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, Xiang X, Giralt M, Hidalgo J, Saha AK, Pedersen BK, Ruderman NB (2004) AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun 320:449–454CrossRefPubMedGoogle Scholar
  16. 16.
    Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565CrossRefPubMedGoogle Scholar
  17. 17.
    Henin N, Vincent MF, Gruber HE, Van den Berghe G (1995) Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J 9:541–546PubMedGoogle Scholar
  18. 18.
    Reiter AK, Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2005) Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator ­aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab 288:E980–E988CrossRefGoogle Scholar
  19. 19.
    Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L (2006) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55:865–874CrossRefPubMedGoogle Scholar
  20. 20.
    Guigas B, Taleux N, Foretz M, Detaille D, Andreelli F, Viollet B, Hue L (2007) AMP-activated protein kinase-­independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochem J 404:499–507CrossRefPubMedGoogle Scholar
  21. 21.
    Guigas B, Sakamato K, Taleux N, Reyna SM, Musi N, Viollet B, Hue L (2009) Beyond AICA riboside: In search of new specific AMP-activated protein kinase activators. IUBMB Life 61:18–26Google Scholar
  22. 22.
    Pencek RR, Shearer J, Camacho RC, James FD, Lacy DB, Fueger PT, Donahue EP, Snead W, Wasserman DH (2005) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes 54:355–360CrossRefPubMedGoogle Scholar
  23. 23.
    Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416CrossRefPubMedGoogle Scholar
  24. 24.
    Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282:32539–32548CrossRefPubMedGoogle Scholar
  25. 25.
    El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228CrossRefPubMedGoogle Scholar
  26. 26.
    Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMedGoogle Scholar
  28. 28.
    Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302:510–515CrossRefPubMedGoogle Scholar
  29. 29.
    Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP, Sheardown SA, Yue L, Burchard EG, Brett CM, Giacomini KM (2008) Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 83:273–280CrossRefPubMedGoogle Scholar
  30. 30.
    Alnouti Y, Petrick JS, Klaassen CD (2006) Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab Dispos 34:477–482PubMedGoogle Scholar
  31. 31.
    Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, Niidome T, Katayama Y, Okitsu O (2008) Efficient delivery of siRNA using dendritic poly(L-lysine) for loss-of-function analysis. J Control Release 126:159–166CrossRefGoogle Scholar
  32. 32.
    Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C (2004) Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059CrossRefPubMedGoogle Scholar
  33. 33.
    Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232CrossRefPubMedGoogle Scholar
  34. 34.
    LeBrasseur NK, Kelly M, Tsao TS, Farmer SR, Saha AK, Ruderman NB, Tomas E (2006) Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab 291:E175–E181CrossRefGoogle Scholar
  35. 35.
    Saha AK, Avilucea PR, Ye JM, Assifi MM, Kraegen EW, Ruderman NB (2004) Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun 314:580–585CrossRefPubMedGoogle Scholar
  36. 36.
    Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB, Chen H, Rossetti L, Scherer PE (2006) Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 281:2654–2660CrossRefPubMedGoogle Scholar
  37. 37.
    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392CrossRefPubMedGoogle Scholar
  38. 38.
    Lan F, Cacicedo JM, Ruderman N, Ido Y (2008) SIRT1 Modulation of the acetylation status, cytosolic localization, and activity of lkb1: possible role in AMP-activated protein kinase activation. J Biol Chem 283:27628–27635CrossRefPubMedGoogle Scholar
  39. 39.
    Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026CrossRefPubMedGoogle Scholar
  40. 40.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118CrossRefPubMedGoogle Scholar
  41. 41.
    Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase – development of the energy sensor concept. J Physiol 574:7–15CrossRefPubMedGoogle Scholar
  42. 42.
    Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci 14:19–44CrossRefPubMedGoogle Scholar
  43. 43.
    Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574:41–53CrossRefPubMedGoogle Scholar
  44. 44.
    Andreelli F, Foretz M, Knauf C, Cani PD, Perrin C, Iglesias MA, Pillot B, Bado A, Tronche F, Mithieux G, Vaulont S, Burcelin R, Viollet B (2006) Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147:2432–2441CrossRefPubMedGoogle Scholar
  45. 45.
    Bergeron R, Previs SF, Cline GW, Perret P, Russell RR 3rd, Young LH, Shulman GI (2001) Effect of 5-­aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 50:1076–1082CrossRefPubMedGoogle Scholar
  46. 46.
    Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54:1331–1339CrossRefPubMedGoogle Scholar
  47. 47.
    Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646CrossRefPubMedGoogle Scholar
  48. 48.
    Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843CrossRefPubMedGoogle Scholar
  49. 49.
    Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109–1111CrossRefPubMedGoogle Scholar
  50. 50.
    Hong YH, Varanasi US, Yang W, Leff T (2003) AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem 278:27495–27501CrossRefPubMedGoogle Scholar
  51. 51.
    Leclerc I, Lenzner C, Gourdon L, Vaulont S, Kahn A, Viollet B (2001) Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. Diabetes 50:1515–1521CrossRefPubMedGoogle Scholar
  52. 52.
    Foretz M, Carling D, Guichard C, Ferre P, Foufelle F (1998) AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem 273:14767–14771CrossRefPubMedGoogle Scholar
  53. 53.
    Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D (2000) Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20:6704–6711CrossRefPubMedGoogle Scholar
  54. 54.
    Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848CrossRefPubMedGoogle Scholar
  55. 55.
    Ferre P, Azzout-Marniche D, Foufelle F (2003) AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans 31:220–223CrossRefPubMedGoogle Scholar
  56. 56.
    Postic C, Dentin R, Denechaud PD, Girard J (2007) ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr 27:179–192CrossRefPubMedGoogle Scholar
  57. 57.
    Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838CrossRefPubMedGoogle Scholar
  58. 58.
    Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K (2002) Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of ­carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 277:3829–3835CrossRefPubMedGoogle Scholar
  59. 59.
    Jensen TE, Schjerling P, Viollet B, Wojtaszewski JF, Richter EA (2008) AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle. PLoS ONE 3:e2102CrossRefGoogle Scholar
  60. 60.
    Jorgensen SB, Richter EA, Wojtaszewski JF (2006) Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 574:17–31CrossRefPubMedGoogle Scholar
  61. 61.
    Carling D, Hardie DG (1989) The substrate and sequence specificity of the AMP-activated protein kinase. Phos­phorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta 1012:81–86CrossRefPubMedGoogle Scholar
  62. 62.
    Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S (2003) The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111: 91–98PubMedGoogle Scholar
  63. 63.
    Ferre P, Foufelle F (2007) SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68:72–82PubMedGoogle Scholar
  64. 64.
    Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022CrossRefPubMedGoogle Scholar
  65. 65.
    Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55:120–127CrossRefPubMedGoogle Scholar
  66. 66.
    Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156CrossRefPubMedGoogle Scholar
  67. 67.
    Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987CrossRefPubMedGoogle Scholar
  68. 68.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342CrossRefPubMedGoogle Scholar
  69. 69.
    Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234CrossRefPubMedGoogle Scholar
  70. 70.
    Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590CrossRefPubMedGoogle Scholar
  71. 71.
    Cheng SW, Fryer LG, Carling D, Shepherd PR (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279:15719–15722CrossRefPubMedGoogle Scholar
  72. 72.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226CrossRefPubMedGoogle Scholar
  73. 73.
    Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C, Rider M (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423CrossRefPubMedGoogle Scholar
  74. 74.
    Krause U, Bertrand L, Hue L (2002) Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem 269:3751–3759CrossRefPubMedGoogle Scholar
  75. 75.
    Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation – AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574:63–71CrossRefPubMedGoogle Scholar
  76. 76.
    Rattan R, Giri S, Singh AK, Singh I (2005) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem 280:39582–39593CrossRefPubMedGoogle Scholar
  77. 77.
    Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67:6745–6752CrossRefPubMedGoogle Scholar
  78. 78.
    Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293CrossRefPubMedGoogle Scholar
  79. 79.
    Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F, Hue L (2002) Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett 526:38–42CrossRefPubMedGoogle Scholar
  80. 80.
    Blume C, Benz PM, Walter U, Ha J, Kemp BE, Renne T (2007) AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein. J Biol Chem 282:4601–4612CrossRefPubMedGoogle Scholar
  81. 81.
    Zhang L, Li J, Young LH, Caplan MJ (2006) AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci U S A 103:17272–17277CrossRefPubMedGoogle Scholar
  82. 82.
    Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792CrossRefPubMedGoogle Scholar
  83. 83.
    Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB (2006) Adiponectin – a key adipokine in the metabolic syndrome. Diabetes Obes Metab 8:264–280CrossRefPubMedGoogle Scholar
  84. 84.
    Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863–25866CrossRefPubMedGoogle Scholar
  85. 85.
    Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, Paul A, Chan L (2002) Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277:34658–34661CrossRefPubMedGoogle Scholar
  86. 86.
    Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737CrossRefPubMedGoogle Scholar
  87. 87.
    Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T, Ito Y, Kamon J, Tsuchida A, Kumagai K, Kozono H, Hada Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Awazawa M, Takamoto I, Froguel P, Hara K, Tobe K, Nagai R, Ueki K, Kadowaki T (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339CrossRefPubMedGoogle Scholar
  88. 88.
    Aguilera CM, Gil-Campos M, Canete R, Gil A (2008) Alterations in plasma and tissue lipids associated with ­obesity and metabolic syndrome. Clin Sci (Lond) 114:183–193CrossRefGoogle Scholar
  89. 89.
    Dixon JB, Bhathal PS, O’Brien PE (2001) Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121:91–100CrossRefPubMedGoogle Scholar
  90. 90.
    Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50:1844–1850CrossRefPubMedGoogle Scholar
  91. 91.
    Bajaj M, Suraamornkul S, Pratipanawatr T, Hardies LJ, Pratipanawatr W, Glass L, Cersosimo E, Miyazaki Y, DeFronzo RA (2003) Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 52:1364–1370CrossRefPubMedGoogle Scholar
  92. 92.
    Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM (2000) Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 6:998–1003CrossRefPubMedGoogle Scholar
  93. 93.
    Ratziu V, Giral P, Jacqueminet S, Charlotte F, Hartemann-Heurtier A, Serfaty L, Podevin P, Lacorte JM, Bernhardt C, Bruckert E, Grimaldi A, Poynard T (2008) Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroentero­logy 135:100–110CrossRefPubMedGoogle Scholar
  94. 94.
    Rogers CQ, Ajmo JM, You M (2008) Adiponectin and alcoholic fatty liver disease. IUBMB Life 60:790–797Google Scholar
  95. 95.
    Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112:91–100PubMedGoogle Scholar
  96. 96.
    You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW (2004) The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127:1798–1808CrossRefPubMedGoogle Scholar
  97. 97.
    Ajmo JM, Liang X, Rogers CQ, Pennock B, You M (2008) Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 295:G833–G842CrossRefGoogle Scholar
  98. 98.
    Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H (2001) Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activator, 5-aminoimidazole-­4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 287:562–567CrossRefPubMedGoogle Scholar
  99. 99.
    Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305CrossRefPubMedGoogle Scholar
  100. 100.
    Fasolo A, Sessa C (2008) mTOR inhibitors in the treatment of cancer. Expert Opin Investig Drugs 17:1717–1734CrossRefPubMedGoogle Scholar
  101. 101.
    Semela D, Piguet A-C, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour J-F (2007) Vascular remodeling and atitumoral effects of mTOR inhibition in a rat model of hepatocelluar carcinoma. J Hepatol 46:840–848CrossRefPubMedGoogle Scholar
  102. 102.
    Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406CrossRefPubMedGoogle Scholar
  103. 103.
    Guigas B, Hue L (2008) Metformin and the AMP activated protein kinase. In: Mitieux G, Wiernsperger N (eds) Metformin: mechanistic insights towards new applications. Transworld Research Network:Chap 5, pp 81–110Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Hormone and Metabolic Research UnitUniversité catholique de Louvain, and de Duve Institute AvenueBrusselsBelgium

Personalised recommendations