Role of PKB/Akt in Liver Diseases

  • Elena Zhuravleva
  • Oliver Tschopp
  • Brian A. HemmingsEmail author


PKB/Akt is a ubiquitous and evolutionarily conserved serine/threonine kinase that is recognized as a major coordinator of various intracellular signals. It controls cell responses to extrinsic stimuli and regulates cell metabolism, proliferation, and survival. Proper tuning of PKB activity via direct or indirect mechanisms is of utmost importance for stringent regulation of PKB-dependent cellular activities. Many diseases, such as cancer or metabolic disorders, are the result of, or are associated with, aberrant activity of the PI3K/PTEN/PKB pathway. In many tumors, the PI3K/PTEN/PKB pathway is activated by upstream mutations in PI3K or PTEN or by the amplification/overexpression/mutation of PKB iso­forms themselves. Liver tumors are not the only pathological condition associated with disorders of this pathway. PKB has also been implicated in the development of hepatic insulin resistance, type 2 diabetes mellitus and, as has become evident over the past few years, in ischemia/reperfusion processes. In this chapter, the role of PKB in major physiological processes of cells is summarized and different liver disease conditions are considered by analyzing their pathophysiology from the perspective of PKB involvement.


Liver Regeneration Hepatic Insulin Resistance Pleckstrin Homology Domain Hydrophobic Motif Liver Disease Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Arnaud Parcellier, Lana Bozulic, Alexander Hergovich, and Patrick King for their ­critical reading of this manuscript. EZ is the recipient of a Swiss Bridge fellowship. OT is supported by the Gebert Rüf Foundation (GRS 027/06) and Amélie Waring Foundation. The Friedrich Miescher Institute is part of the Novartis Research Foundation.


  1. 1.
    Jones PF, Jakubowicz T, Pitossi FJ et al (1991) Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 88(10):4171–4175PubMedCrossRefGoogle Scholar
  2. 2.
    Bellacosa A, Testa JR, Staal SP et al (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254(5029):274–277PubMedCrossRefGoogle Scholar
  3. 3.
    Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. J Biochem 201(2):475–481Google Scholar
  4. 4.
    Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664PubMedCrossRefGoogle Scholar
  5. 5.
    Brazil DP, Yangand ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29(5):233–242PubMedCrossRefGoogle Scholar
  6. 6.
    Fayard E, Tintignac LA, Baudry A et al (2005) Protein kinase B/Akt at a glance. J Cell Sci 118(Pt 24):5675–5678PubMedCrossRefGoogle Scholar
  7. 7.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274PubMedCrossRefGoogle Scholar
  8. 8.
    Haslam RJ, Koideand HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363(6427):309–310PubMedCrossRefGoogle Scholar
  9. 9.
    Bellacosa A, Franke TF, Gonzalez-Portal ME et al (1993) Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene 8(3):745–754PubMedGoogle Scholar
  10. 10.
    Altomare DA, Lyons GE, Mitsuuchi Y et al (1998) Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene 16(18):2407–2411PubMedCrossRefGoogle Scholar
  11. 11.
    Yang ZZ, Tschopp O, Hemmings-Mieszczak M et al (2003) Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 278(34):32124–32131PubMedCrossRefGoogle Scholar
  12. 12.
    Dahle MK, Overland G, Myhre AE et al (2004) The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun 72(10):5704–5711PubMedCrossRefGoogle Scholar
  13. 13.
    Ping C, Xiaoling D, Jin Z et al (2006) Hepatic sinusoidal endothelial cells promote hepatocyte proliferation early after partial hepatectomy in rats. Arch Med Res 37(5):576–583PubMedCrossRefGoogle Scholar
  14. 14.
    Ping C, Lin Z, Jiming D et al (2006) The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy. Biochem Biophys Res Commun 342(3):887–893PubMedCrossRefGoogle Scholar
  15. 15.
    Wymann MP, Marone R (2005) Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol 17(2):141–149PubMedCrossRefGoogle Scholar
  16. 16.
    Engelman JA, Luoand J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619PubMedCrossRefGoogle Scholar
  17. 17.
    Samuels Y, Diaz LA Jr, Schmidt-Kittler O et al (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573PubMedCrossRefGoogle Scholar
  18. 18.
    Alessi DR, James SR, Downes CP et al (1997) Charac­terization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269PubMedCrossRefGoogle Scholar
  19. 19.
    Calleja V, Alcor D, Laguerre M et al (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5(4):e95CrossRefGoogle Scholar
  20. 20.
    Bayascas JR, Wullschleger S, Sakamoto K et al (2008) Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol 28(10):3258–3272PubMedCrossRefGoogle Scholar
  21. 21.
    Yang J, Cron P, Thompson V et al (2002) Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9(6):1227–1240PubMedCrossRefGoogle Scholar
  22. 22.
    Sarbassov DD, Guertin DA, Ali SM et al (2005) Phos­phorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101PubMedCrossRefGoogle Scholar
  23. 23.
    Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502PubMedCrossRefGoogle Scholar
  24. 24.
    Feng J, Park J, Cron P et al (2004) Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279(39):41189–41196PubMedCrossRefGoogle Scholar
  25. 25.
    Bozulic L, Surucu B, Hynx D et al (2008) PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30(2):203–213PubMedCrossRefGoogle Scholar
  26. 26.
    Jensen MR, Schoepfer J, Radimerski T et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33CrossRefGoogle Scholar
  27. 27.
    Stuhmer T, Zollinger A, Siegmund D et al (2008) Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22(8):1604–12PubMedCrossRefGoogle Scholar
  28. 28.
    Hostein I, Robertson D, DiStefano F et al (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61(10):4003–9PubMedGoogle Scholar
  29. 29.
    Sato S, Fujitaand N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97(20):10832–7PubMedCrossRefGoogle Scholar
  30. 30.
    Laine J, Kunstle G, Obata T et al (2000) The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 6(2):395–407PubMedCrossRefGoogle Scholar
  31. 31.
    Pekarsky Y, Koval A, Hallas C et al (2000) Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci U S A 97(7):3028–33PubMedCrossRefGoogle Scholar
  32. 32.
    Remy I, Michnick SW (2004) Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol Cell Biol 24(4):1493–504PubMedCrossRefGoogle Scholar
  33. 33.
    Salmena L, Carracedoand A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414PubMedCrossRefGoogle Scholar
  34. 34.
    Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113(12):1774–83PubMedGoogle Scholar
  35. 35.
    Hu TH, Wang CC, Huang CC et al (2007) Down-regulation of tumor suppressor gene PTEN, overexpression of p53, plus high proliferating cell nuclear antigen index predict poor patient outcome of hepatocellular carcinoma after resection. Oncol Rep 18(6):1417–26PubMedGoogle Scholar
  36. 36.
    Andjelkovic M, Jakubowicz T, Cron P et al (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) ­promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A 93(12):5699–704PubMedCrossRefGoogle Scholar
  37. 37.
    Ugi S, Imamura T, Maegawa H et al (2004) Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3–L1 adipocytes. Mol Cell Biol 24(19):8778–89PubMedCrossRefGoogle Scholar
  38. 38.
    Gao T, Furnariand F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18(1):13–24PubMedCrossRefGoogle Scholar
  39. 39.
    Nawa M, Kanekura K, Hashimoto Y et al (2008) A novel Akt/PKB-interacting protein promotes cell adhesion and inhibits familial amyotrophic lateral sclerosis-linked mutant SOD1-induced neuronal death via inhibition of PP2A-mediated dephosphorylation of Akt/PKB. Cell Signal 20(3):493–505PubMedGoogle Scholar
  40. 40.
    Basso AD, Solit DB, Chiosis G et al (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277(42):39858–39866PubMedCrossRefGoogle Scholar
  41. 41.
    Brognard J, Sierecki E, Gao T et al (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25(6):917–31PubMedCrossRefGoogle Scholar
  42. 42.
    Liu F, Roth RA (1995) Grb-IR: a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function. Proc Natl Acad Sci U S A 92(22):10287–10291PubMedCrossRefGoogle Scholar
  43. 43.
    Wang L, Balas B, Christ-Roberts CY et al (2007) Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol Cell Biol 27(18):6497–505PubMedCrossRefGoogle Scholar
  44. 44.
    Wick KR, Werner ED, Langlais P et al (2003) Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem 278(10):8460–7PubMedCrossRefGoogle Scholar
  45. 45.
    Jahn T, Seipel P, Urschel S et al (2002) Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol 22(4):979–91PubMedCrossRefGoogle Scholar
  46. 46.
    Shiura H, Miyoshi N, Konishi A et al (2005) Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochem Biophys Res Commun 329(3):909–16PubMedCrossRefGoogle Scholar
  47. 47.
    Maira SM, Galetic I, Brazil DP et al (2001) Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294(5541):374–80PubMedCrossRefGoogle Scholar
  48. 48.
    Paramio JM, Segrelles C, Ruiz S et al (2001) Inhibition of protein kinase B (PKB) and PKC{zeta} mediates keratin K10-induced cell cycle arrest. Mol Cell Biol 21(21):7449–7459PubMedCrossRefGoogle Scholar
  49. 49.
    Tokuda E, Fujita N, Oh-hara T et al (2007) Casein kinase 2-interacting protein-1, a novel Akt pleckstrin homology domain-interacting protein, down-regulates PI3K/Akt signaling and suppresses tumor growth in vivo. Cancer Res 67(20):9666–76PubMedCrossRefGoogle Scholar
  50. 50.
    Du K, Herzig S, Kulkarni RN et al (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300(5625):1574–7PubMedCrossRefGoogle Scholar
  51. 51.
    Okamoto H, Latres E, Liu R et al (2007) Genetic deletion of Trb3, the mammalian Drosophila tribbles homolog, displays normal hepatic insulin signaling and glucose homeostasis. Diabetes 56(5):1350–1356PubMedCrossRefGoogle Scholar
  52. 52.
    Gulati P, Thomas G (2007) Nutrient sensing in the mTOR/S6K1 signalling pathway. Biochem Soc Trans 35(Pt 2):236–8PubMedGoogle Scholar
  53. 53.
    Pende M, Kozma SC, Jaquet M et al (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408(6815):994–7PubMedCrossRefGoogle Scholar
  54. 54.
    Constantinou C, Clemens MJ (2005) Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53. Oncogene 24(30):4839–50PubMedCrossRefGoogle Scholar
  55. 55.
    Fingar DC, Richardson CJ, Tee AR et al (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24(1):200–16PubMedCrossRefGoogle Scholar
  56. 56.
    Hara K, Yonezawa K, Kozlowski MT et al (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272(42):26457–63PubMedCrossRefGoogle Scholar
  57. 57.
    Wang L, Harrisand TE, Lawrence JC Jr (2008) Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 283(23):15619–27PubMedCrossRefGoogle Scholar
  58. 58.
    Thedieck K, Polak P, Kim ML et al (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2(11):e1217CrossRefGoogle Scholar
  59. 59.
    Sancak Y, Thoreen CC, Peterson TR et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–15PubMedCrossRefGoogle Scholar
  60. 60.
    Fonseca BD, Smith EM, Lee VH et al (2007) PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 282(34):24514–24PubMedCrossRefGoogle Scholar
  61. 61.
    Oshiro N, Takahashi R, Yoshino K et al (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282(28):20329–39PubMedCrossRefGoogle Scholar
  62. 62.
    Vander Haar E, Lee SI, Bandhakavi S et al (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–23PubMedCrossRefGoogle Scholar
  63. 63.
    Condorelli G, Drusco A, Stassi G et al (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A 99(19):12333–8PubMedCrossRefGoogle Scholar
  64. 64.
    Bernal-Mizrachi E, Wen W, Stahlhut S et al (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108(11):1631–8PubMedGoogle Scholar
  65. 65.
    Trumper K, Trumper A, Trusheim H et al (2000) Integrative mitogenic role of protein kinase B/Akt in beta-cells. Ann N Y Acad Sci 921:242–50PubMedCrossRefGoogle Scholar
  66. 66.
    Graff JR, Konicek BW, McNulty AM et al (2000) Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 275(32):24500–24505PubMedCrossRefGoogle Scholar
  67. 67.
    Ono H, Shimano H, Katagiri H et al (2003) Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 52(12):2905–2913PubMedCrossRefGoogle Scholar
  68. 68.
    Yang ZZ, Tschopp O, Di-Poi N et al (2005) Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol 25(23):10407–18PubMedCrossRefGoogle Scholar
  69. 69.
    Cho H, Thorvaldsen JL, Chu Q et al (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276(42):38349–52PubMedCrossRefGoogle Scholar
  70. 70.
    Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–41PubMedCrossRefGoogle Scholar
  71. 71.
    Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–21PubMedCrossRefGoogle Scholar
  72. 72.
    Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–68PubMedCrossRefGoogle Scholar
  73. 73.
    Basu S, Totty NF, Irwin MS et al (2003) Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14–3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11(1):11–23PubMedCrossRefGoogle Scholar
  74. 74.
    Horvath MM, Wang X, Resnick MA et al (2007) Divergent evolution of human p53 binding sites: cell cycle versus apoptosis. PLoS Genet 3(7):e127CrossRefGoogle Scholar
  75. 75.
    Feng J, Tamaskovic R, Yang Z et al (2004) Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 279(34):35510–7PubMedCrossRefGoogle Scholar
  76. 76.
    Dummler B, Tschopp O, Hynx D et al (2006) Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol 26(21):8042–51PubMedCrossRefGoogle Scholar
  77. 77.
    Cho H, Mu J, Kim JK et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–31PubMedCrossRefGoogle Scholar
  78. 78.
    Garofalo RS, Orena SJ, Rafidi K et al (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 112(2):197–208PubMedGoogle Scholar
  79. 79.
    Majewski N, Nogueira V, Bhaskar P et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–30PubMedCrossRefGoogle Scholar
  80. 80.
    Cross DAE, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789PubMedCrossRefGoogle Scholar
  81. 81.
    McManus EJ, Sakamoto K, Armit LJ et al (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. Embo J 24(8):1571–83PubMedCrossRefGoogle Scholar
  82. 82.
    MacAulay K, Doble BW, Patel S et al (2007) Glycogen synthase kinase 3[alpha]-specific regulation of murine hepatic glycogen metabolism. Cell Metab 6(4):329–337PubMedCrossRefGoogle Scholar
  83. 83.
    Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–9PubMedCrossRefGoogle Scholar
  84. 84.
    Taniguchi CM, Kondo T, Sajan M et al (2006) Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKC[lambda]/[zeta]. Cell Metab 3(5):343–353PubMedCrossRefGoogle Scholar
  85. 85.
    Berwick DC, Hers I, Heesom KJ et al (2002) The Identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem 277(37):33895–33900PubMedCrossRefGoogle Scholar
  86. 86.
    Bauer DE, Hatzivassiliou G, Zhao F et al (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24(41):6314–22PubMedCrossRefGoogle Scholar
  87. 87.
    Yahagi N, Shimano H, Hasegawa K et al (2005) Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer 41(9):1316–1322PubMedCrossRefGoogle Scholar
  88. 88.
    Gross DN, van den Heuveland AP, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27(16):2320–2336Google Scholar
  89. 89.
    Zhang W, Patil S, Chauhan B et al (2006) FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281(15):10105–17PubMedCrossRefGoogle Scholar
  90. 90.
    Matsumoto M, Pocai A, Rossetti L et al (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6(3):208–16PubMedCrossRefGoogle Scholar
  91. 91.
    Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27(7):728–35PubMedGoogle Scholar
  92. 92.
    Li X, Monks B, Ge Q et al (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447(7147):1012–6PubMedCrossRefGoogle Scholar
  93. 93.
    Zheng X, Yang Z, Yue Z et al (2007) FOXO and insulin signaling regulate sensitivity of the circadian clock to ­oxidative stress. Proc Natl Acad Sci U S A 104(40):15899–904PubMedCrossRefGoogle Scholar
  94. 94.
    Clavien PA, Petrowsky H, DeOliveira ML et al (2007) Strategies for safer liver surgery and partial liver transplantation. N Engl J Med 356(15):1545–59PubMedCrossRefGoogle Scholar
  95. 95.
    Lesurtel M, Graf R, Aleil B et al (2006) Platelet-derived serotonin mediates liver regeneration. Science 312(5770): 104–7PubMedCrossRefGoogle Scholar
  96. 96.
    Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213(2):286–300PubMedCrossRefGoogle Scholar
  97. 97.
    Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–47PubMedCrossRefGoogle Scholar
  98. 98.
    Hong F, Nguyen VA, Shen X et al (2000) Rapid activation of protein kinase B/Akt has a key role in antiapoptotic signaling during liver regeneration. Biochem Biophys Res Commun 279(3):974–9PubMedCrossRefGoogle Scholar
  99. 99.
    Mullany LK, Nelsen CJ, Hanse EA et al (2007)Akt-mediated liver growth promotes induction of cyclin E through a novel translational mechanism and a p21-mediated cell cycle arrest. J Biol Chem 282(29): 21244–52PubMedCrossRefGoogle Scholar
  100. 100.
    Haga S, Ogawa W, Inoue H et al (2005) Compensatory recovery of liver mass by Akt-mediated hepatocellular hyper­trophy in liver-specific STAT3-deficient mice.J Hepatol 43(5):799–807PubMedCrossRefGoogle Scholar
  101. 101.
    Murata S, Matsuo R, Ikeda O et al (2008) Platelets promote liver regeneration under conditions of Kupffer celldepletion after hepatectomy in mice. World J Surg 32(6):1088–96PubMedCrossRefGoogle Scholar
  102. 102.
    Jackson LN, Larson SD, Silva SR et al (2008) PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 294(6):G1401–10CrossRefGoogle Scholar
  103. 103.
    Angulo P (2007) GI epidemiology: nonalcoholic fatty liver disease. Aliment Pharmacol Therap 25(8):883–889CrossRefGoogle Scholar
  104. 104.
    Rector RS, Thyfault JP, Wei Y et al (2008) Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J Gastroenterol 14(2):185–92PubMedCrossRefGoogle Scholar
  105. 105.
    Piro S, Spadaro L, Russello M et al (2008) Molecular ­determinants of insulin resistance, cell apoptosis and lipid ­accumulation in non-alcoholic steatohepatitis. Nutr Metab Cardiovasc Dis 18(8):545–552PubMedCrossRefGoogle Scholar
  106. 106.
    Samuel VT, Liu Z-X, Qu X et al (2004) Mechanism of Hepatic Insulin Resistance in Non-alcoholic Fatty Liver Disease. J Biol Chem 279(31):32345–32353PubMedCrossRefGoogle Scholar
  107. 107.
    Mendez-Sanchez N, Arrese M, Zamora-Valdes D et al (2007) Current concepts in the pathogenesis of nonalcoholic fatty liver disease. Liver Int 27(4):423–33PubMedCrossRefGoogle Scholar
  108. 108.
    Lupi R, Del Guerra S, Fierabracci V et al (2002) Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 51(Suppl 1):S134–7CrossRefGoogle Scholar
  109. 109.
    Joseph JW, Koshkin V, Saleh MC et al (2004) Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 279(49):51049–56PubMedCrossRefGoogle Scholar
  110. 110.
    Dyntar D, Eppenberger-Eberhardt M, Maedler K et al (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50(9):2105–2113PubMedCrossRefGoogle Scholar
  111. 111.
    Li Z, Berk M, McIntyre TM et al (2008) The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47(5):1495–503PubMedCrossRefGoogle Scholar
  112. 112.
    Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31(2):53–9PubMedGoogle Scholar
  113. 113.
    Leclercq IA, Da Silva Morais A, Schroyen B et al (2007) Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol 47(1):142–56PubMedCrossRefGoogle Scholar
  114. 114.
    Delibegovic M, Bence KK, Mody N et al (2007) Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol 27(21):7727–34PubMedCrossRefGoogle Scholar
  115. 115.
    Xue B, Kim YB, Lee A et al (2007) Protein-tyrosine phosphatase 1B deficiency reduces insulin resistance and the diabetic phenotype in mice with polygenic insulin resistance. J Biol Chem 282(33):23829–40PubMedCrossRefGoogle Scholar
  116. 116.
    Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 101(7):2082–7PubMedCrossRefGoogle Scholar
  117. 117.
    Vinciguerra M, Sgroi A, Veyrat-Durebex C et al (2009) Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 49:1176–1184PubMedCrossRefGoogle Scholar
  118. 118.
    Wang L, Wang WL, Zhang Y et al (2007) Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res 37(5):389–396PubMedCrossRefGoogle Scholar
  119. 119.
    Lee SR, Yang KS, Kwon J et al (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277(23):20336–42PubMedCrossRefGoogle Scholar
  120. 120.
    Lee JW, Soung YH, Kim SY et al (2004) PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24(8):1477–1480CrossRefGoogle Scholar
  121. 121.
    Tanaka Y, Kanai F, Tada M et al (2006) Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients. Oncogene 25(20):2950–2PubMedCrossRefGoogle Scholar
  122. 122.
    Villanueva A, Chiang DY, Newell P et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastro­enterology 135(6): 1972–1983, 1983 e1–e11Google Scholar
  123. 123.
    Nakanishi K, Sakamoto M, Yamasaki S et al (2005) Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer 103(2):307–12PubMedCrossRefGoogle Scholar
  124. 124.
    Tsang TY, Tang WY, Tsang WP et al (2008) Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis 13(9):1135–47PubMedCrossRefGoogle Scholar
  125. 125.
    Cotler S, Hay N, Xie H et al (2008) Immunohistochemical expression of components of the Akt-mTORC1 pathway is associated with hepatocellular carcinoma in patients with chronic liver disease. Dig Dis Sci 53(3):844–849PubMedCrossRefGoogle Scholar
  126. 126.
    Baba HA, Wohlschlaeger J, Cicinnati VR et al (2009) Phosphorylation of p70S6 kinase predicts overall survival in patients with clear margin-resected hepatocellular carcinoma. Liver Int 29:399–405PubMedCrossRefGoogle Scholar
  127. 127.
    Choudhari SR, Khan MA, Harris G et al (2007) Deactivation of Akt and STAT3 signaling promotes apoptosis, inhibits proliferation, and enhances the sensitivity of hepatocellular carcinoma cells to an anticancer agent Atiprimod. Mol Cancer Ther 6(1):112–121PubMedCrossRefGoogle Scholar
  128. 128.
    Porstmann T, Griffiths B, Chung YL et al (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24(43):6465–81PubMedGoogle Scholar
  129. 129.
    Yang YA, Morin PJ, Han WF et al (2003) Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res 282(2):132–137PubMedCrossRefGoogle Scholar
  130. 130.
    Pflug BR, Pecher SM, Brink AW et al (2003) Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Prostate 57(3):245–54PubMedCrossRefGoogle Scholar
  131. 131.
    Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16(3):202–208PubMedCrossRefGoogle Scholar
  132. 132.
    Furuta E, Pai SK, Zhan R et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68(4):1003–11PubMedCrossRefGoogle Scholar
  133. 133.
    Rahman MA, Kyriazanos ID, Ono T et al (2002) Impact of PTEN expression on the outcome of hepatitis C virus-­positive cirrhotic hepatocellular carcinoma patients: possible relationship with COX II and inducible nitric oxide synthase. Int J Cancer 100(2):152–7PubMedCrossRefGoogle Scholar
  134. 134.
    Street A, Macdonald A, Crowder K et al (2004) The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J Biol Chem 279(13):12232–12241PubMedCrossRefGoogle Scholar
  135. 135.
    Chung YL, Sheuand ML, Yen SH (2003) Hepatitis C virus NS5A as a potential viral Bcl-2 homologue interacts with Bax and inhibits apoptosis in hepatocellular carcinoma. Int J Cancer 107(1):65–73PubMedCrossRefGoogle Scholar
  136. 136.
    Kim KH, Shin H-J, Kim K et al (2007) Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPAR[gamma]. Gastroenterology 132(5):1955–1967PubMedCrossRefGoogle Scholar
  137. 137.
    Choi YH, Kim HI, Seong J et al (2004) Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor [gamma] through protein-protein interaction. FEBS Lett 557(1–3):73–80PubMedCrossRefGoogle Scholar
  138. 138.
    Waris G, Felmlee DJ, Negro F et al (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory ­element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81(15):8122–30PubMedCrossRefGoogle Scholar
  139. 139.
    Aytug S, Reich D, Sapiro LE et al (2003) Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology 38(6):1384–92PubMedGoogle Scholar
  140. 140.
    Bernsmeier C, Duong FH, Christen V et al (2008) Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J Hepatol 49(3):429–40PubMedCrossRefGoogle Scholar
  141. 141.
    Boyault S, Rickman DS, de Reynies A et al (2007) Tran­scriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45(1): 42–52PubMedCrossRefGoogle Scholar
  142. 142.
    Chung T-W, Lee Y-C, Ko J-H et al (2003) Hepatitis B virus X protein modulates the expression of PTEN by inhibiting the function of p53, a transcriptional activator in liver cells. Cancer Res 63(13):3453–3458PubMedGoogle Scholar
  143. 143.
    Kang-Park S, Im JH, Lee JH et al (2006) PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res 122(1–2):53–60PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Elena Zhuravleva
    • 1
  • Oliver Tschopp
    • 1
  • Brian A. Hemmings
    • 1
    Email author
  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland

Personalised recommendations