Advertisement

Insulin Pathway

  • Miran Kim
  • Jack R. WandsEmail author
Chapter

Abstract

Insulin is the principal hormone controlling blood glucose levels. Insulin stimulates the uptake of glucose, and amino and fatty acids into cells, and increases the expression and/or activity of enzymes that enhance glycogen, lipid and protein synthesis, while inhibiting the activity or expression of those enzymes that catalyze the degradation of glycogen [1]. The increase in circulating insulin levels stimulates glucose transport into peripheral tissues and inhibits hepatic gluconeogenesis. Decreased secretion of insulin coupled with tissue resistance results in type 2 diabetes and is also associated with central obesity, hypertension, polycystic ovarian syndrome, dyslipidemia, and atherosclerosis. In addition, insulin has a role as a hepatotrophic factor and promotes hepatocyte proliferation, although the mechanisms by which it stimulates liver growth are not completely understood. At the cellular level, insulin action is characterized by diverse effects, including changes in vesicle trafficking, stimulation of protein kinases and phosphatases, promotion of cellular growth and differentiation, as well as activation or repression of gene transcription [2, 3]. The stimulation of the insulin/insulin receptor substrate-1 (IRS-1) system activates a number of intracellular signaling cascades that ultimately lead to important downstream biologic effects critical for cell function (Fig. 15.1). This complexity of cellular actions implies that insulin stimulation must involve multiple signaling pathways that diverge at or near the activation of receptor tyrosine kinase. Indeed, it is likely that even individual effects of the hormone require the activities of multiple signaling cascades. Although understanding of the signal transduction pathways that underlie insulin’s major physiologic effects is still incomplete, remarkable advances have occurred in the last decade. It is now clear that activation of insulin receptor tyrosine kinase, acting through the insulin receptor substrate (IRS) proteins as multisite docking molecules, creates binding sites that enable the IRSs to recruit and activate multiple, independent intracellular signal generators [4]. In this chapter, we discuss some of the known structural and functional features of the insulin receptor and IRS proteins and focus on recent advances in the understanding of the role of IRS proteins in insulin signaling effects. We will summarize the evidence regarding the potential role of IRS-1 in the pathogenesis of hepatocellular carcinoma (HCC) and explore insulin action on hepatocyte proliferation and liver development in the setting of chronic ethanol abuse.

Keywords

Growth Hormone Insulin Receptor Insulin Signaling Insulin Receptor Substrate Microsomal Triglyceride Transfer Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported in part by NIH grants CA-35711 AA-02666 (JRW) and COBRE RR-­P20RR017695 (MK).

References

  1. 1.
    Saltiel AR, Kahn CR (2001) Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414:799–806PubMedCrossRefGoogle Scholar
  2. 2.
    Baserga R, Hongo A, Rubin M et al (1997) The IGF-1 receptor in cell growth, transformation and apoptosis. Biochime Biophys Acta 1332:F105–F126Google Scholar
  3. 3.
    Tanaka S, Wands JR (1996) Insulin receptor substrate 1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor b1-induced apoptosis. Cancer Res 56:3391–3394PubMedGoogle Scholar
  4. 4.
    White MW, Kahn CR (1994) The insulin signaling system. J Biol Chem 269:1–4PubMedGoogle Scholar
  5. 5.
    Gustafson TA, He W, Craparo A et al (1995) Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol 15:2500–2508PubMedGoogle Scholar
  6. 6.
    Hansen H, Svensson U, Zhu J et al (1996) Interaction between the Grb10 SH2 domain and the insulin receptor carboxyl terminus. J Biol Chem 271:8882–8886PubMedCrossRefGoogle Scholar
  7. 7.
    Myers MG, Sun XJ, White MF (1994) The IRS-1 signaling system. Trends Biochem Sci 19:289–293PubMedCrossRefGoogle Scholar
  8. 8.
    Sun XJ, Wang LM, Zhang Y (1995) Role of IRS-2 in insulin and cytokine signaling. Nature 377:173–177PubMedCrossRefGoogle Scholar
  9. 9.
    Pete G, Fuller CR, Oldham JM et al (1999) Postnatal growth responses to insulin-like growth factor 1 in insulin receptor substrate-1-deficient mice. Endocrinol 140:5478–5487CrossRefGoogle Scholar
  10. 10.
    Biddinger SB, Miyazaki M, Boucher J et al (2006) Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes 55:2032–2041PubMedCrossRefGoogle Scholar
  11. 11.
    Michael MD, Kulkarni RN, Postic C et al (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97PubMedCrossRefGoogle Scholar
  12. 12.
    Nevado C, Benito M, Valverde AM (2008) Role of insulin receptor and balance in insulin receptor isoforms A and B in regulation of apoptosis in simian virus 40-immortalized neonatal hepatocytes. Mol Biol Cell 19:1185–1198PubMedCrossRefGoogle Scholar
  13. 13.
    White MF (2003) Insulin signaling in health and disease. Science 302:1710–1711PubMedCrossRefGoogle Scholar
  14. 14.
    Sesti G, Federici M, Hribal ML et al (2001) Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 15:2099–2111PubMedCrossRefGoogle Scholar
  15. 15.
    Sun XJ, Rothenberg P, Kahn CR et al (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77PubMedCrossRefGoogle Scholar
  16. 16.
    Araki E, Lipes MA, Patti ME et al (1994) Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190PubMedCrossRefGoogle Scholar
  17. 17.
    Tamemoto H, Kadowaki T, Tobe K et al (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186PubMedCrossRefGoogle Scholar
  18. 18.
    Thirone AC, Huang C, Klip A (2006) Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab 17:72–78PubMedCrossRefGoogle Scholar
  19. 19.
    Tobe K, Tamemoto H, Yamauchi T et al (1995) Identification of a 190-kDa protein as a novel substrate for the insulin receptor kinase functionally similar to insulin receptor ­substrate-1. J Biol Chem 270:5698–5701PubMedCrossRefGoogle Scholar
  20. 20.
    Murata Y, Tsuruzoe K, Kawashima J et al (2007) IRS-1 transgenic mice show increased epididymal fat mass and insulin resistance. Biochem Biophys Res Commun 364:301–307PubMedCrossRefGoogle Scholar
  21. 21.
    Withers DJ, Gutierrez JS, Towery H et al (1998) Distribution of IRS-2 causes type2 diabetes in mice. Nature 391:900–904PubMedCrossRefGoogle Scholar
  22. 22.
    Neganova I, Al-Qassab H, Heffron H et al (2007) Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse. Biol Reprod 76:1045–1053PubMedCrossRefGoogle Scholar
  23. 23.
    Dong XC, Copps KD, Guo S et al (2008) Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8:65–76PubMedCrossRefGoogle Scholar
  24. 24.
    Kubota N, Kubota T, Itoh S et al (2008) Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab 8:49–64PubMedCrossRefGoogle Scholar
  25. 25.
    Lavan BE, Lane WS, Lien GE (1997) The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem 272:11439–11443PubMedCrossRefGoogle Scholar
  26. 26.
    Terauchi Y, Matsui J, Suzuki R et al (2003) Impact of genetic background and ablation of insulin receptor substrate (IRS)-3 on IRS-2 knock-out mice. J Biol Chem 278:1 4284–14290PubMedCrossRefGoogle Scholar
  27. 27.
    Villarreal RS, Alvarez SE, Ayub MJ et al (2006) Angiotensin II modulates tyr-phosphorylation of IRS-4, an insulin receptor substrate, in rat liver membranes. Mol Cell Biochem 293: 35–46PubMedCrossRefGoogle Scholar
  28. 28.
    Nandi A, Kitamura Y, Kahn CR et al (2004) Mouse models of insulin resistance. Physiol Rev 84:623–647PubMedCrossRefGoogle Scholar
  29. 29.
    Fantin VR, Wang Q, Lienhard GE et al (2000) Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol 278: E127–E133Google Scholar
  30. 30.
    Cai D, Dhe-Paganon S, Melendez PA et al (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330PubMedCrossRefGoogle Scholar
  31. 31.
    Cheatham B, Kahn CR (1995) Insulin action and the insulin signaling network. Endocrinol Rev 16:117–142Google Scholar
  32. 32.
    Nishiyama M, Ito T, Wands JR (1992) Cloning and increased expression of an insulin receptor substrate-1-like gene in human hepatocellular carcinoma. Biochem Biophys Res Commun 183:280–285PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka S, Wands JR (1996) A carboxy-terminal truncated IRS-1 dominant negative protein reverses the human hepatocellular carcinoma malignant phenotype. J Clin Invest 98: 2100–2108PubMedCrossRefGoogle Scholar
  34. 34.
    Backer JM, Myers MGJ, Shoelson SE et al (1992) Phos­phatidylinositol 3’-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11:3469–3479PubMedGoogle Scholar
  35. 35.
    Myers MGJ, Backer JM, Sun XJ et al (1992) IRS-1 activates phosphatidylinositol 3’-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci USA 89: 10350–10354PubMedCrossRefGoogle Scholar
  36. 36.
    Skolnik EY, Lee CH, Batzer A et al (1993) The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signaling. EMBO J 12:1929–1936PubMedGoogle Scholar
  37. 37.
    Sun XJ, Crimmins DL, Myers MGJ et al (1993) Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 13:7418–7428PubMedGoogle Scholar
  38. 38.
    White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40(Suppl 2):S2–S17CrossRefGoogle Scholar
  39. 39.
    Macaulay VM (1992) Insulin-like growth factors and cancer. Br J Cancer 65:311–320PubMedGoogle Scholar
  40. 40.
    Mohr L, Tanaka S, Wands JR (1998) Ethanol inhibits hepatocytes proliferation through the IRS-1 signal transduction pathway in transgenic mice. Gastroenterology 115:1558–1565PubMedCrossRefGoogle Scholar
  41. 41.
    Tanaka S, Mohr L, Schmidt EV et al (1997) Biological effect of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 26:598–604PubMedCrossRefGoogle Scholar
  42. 42.
    Tanaka S, Ito T, Wands JR (1996) Neoplastic transformation induced by insulin receptor substrate-1 overexpression requires an interaction with both Grb2 and Syp signaling molecules. J Biol Chem 271:14610–14616PubMedCrossRefGoogle Scholar
  43. 43.
    Ito T, Sasaki Y, Wands JR (1996) Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases. Mol Cell Biol 16:943–951PubMedGoogle Scholar
  44. 44.
    Milarski KL, Saltiel AR (1994) Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem 269:21239–21243PubMedGoogle Scholar
  45. 45.
    Noguchi T, Matozaki T, Horita K et al (1994) Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol 14:6674–6682PubMedGoogle Scholar
  46. 46.
    Xiao S, Rose DW, Sasaoka T et al (1994) Syp (SH-PTP2) is a positive mediator of growth factor-stimulated mitogenic signal transduction. J Biol Chem 269:21244–21248PubMedGoogle Scholar
  47. 47.
    Yamauchi K, Milarski KL, Saltiel AR et al (1995) Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. Proc Natl Acad Sci USA 92:664–668PubMedCrossRefGoogle Scholar
  48. 48.
    Cantarini MC, de la Monte SM, Pang M et al (2006) Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology 44:446–457PubMedCrossRefGoogle Scholar
  49. 49.
    de la Monte SM, Tamaki S, Cantarini MC et al (2006) Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness. J Hepatol 44:971–983PubMedCrossRefGoogle Scholar
  50. 50.
    Mohr L, Banerjee K, Kleinschmidt M et al (2008) Transgenic overexpression of insulin receptor substrate 1 in hepatocytes enhances hepatocelluar proliferation in young mice only. Hepatology Res 38:1233–1240Google Scholar
  51. 51.
    Longato L, de la Monte S, Califano S et al (2008) Synergistic premalignant effects of chronic ethanol exposure and insulin receptor substrate-1 overexpression in liver. Hepatol Res 38:940–953PubMedCrossRefGoogle Scholar
  52. 52.
    Khamzina L, Borgeat P (1998) Correlation of alpha-fetoprotein expression in normal hepatocytes during development with tyrosine phosphorylation and insulin receptor expression. Mol Cell Biol 9:1093–1105Google Scholar
  53. 53.
    White MF (1998) The IRS-signaling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182:3–11PubMedCrossRefGoogle Scholar
  54. 54.
    Khamzina L, Gruppuso PA, Wands JR (2003) Insulin signaling through insulin receptor substrate 1 and 2 in normal liver development. Gastroenterology 125:572–585PubMedCrossRefGoogle Scholar
  55. 55.
    Sasaki Y, Zhang XF, Nishiyama M et al (1993) Expression and phosphorylation of insulin receptor substrate 1 during rat liver regeneration. J Biol Chem 268:3805–3808PubMedGoogle Scholar
  56. 56.
    Spector SA, Olson ET, Gumbs AA et al (1999) Human insulin receptor and insulin signaling proteins in hepatic disease. J Surg Rea 83:32–35CrossRefGoogle Scholar
  57. 57.
    Escribano O, Fernandez-Moreno MD, Zueco JA et al (2003) Insulin receptor substrate-4 signaling in quiescent rat hepatocytes and in regenerating rat liver. Hepatology 37: 1461–1469PubMedCrossRefGoogle Scholar
  58. 58.
    Cuevas EP, Escribano O, Chiloeches A et al (2007) Role of insulin receptor substrate-4 in IGF-I-stimulated HEPG2 proliferation. J Hepatol 46:1089–1098PubMedCrossRefGoogle Scholar
  59. 59.
    Desbois-Mouthon C, Wendum D, Cadoret A et al (2006) Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. Faseb J 20:773–775PubMedGoogle Scholar
  60. 60.
    Shepherd PR, Withers DJ, Siddle K (1998) Phophoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochem J 333:471–490PubMedGoogle Scholar
  61. 61.
    Scheid MP, Woodgett JR (2001) PKB/AKT: functional insight from genetic models. Nat Rev Mol Cell Biol 2: 760–768PubMedCrossRefGoogle Scholar
  62. 62.
    Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182:31–48PubMedCrossRefGoogle Scholar
  63. 63.
    Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253:210–229PubMedCrossRefGoogle Scholar
  64. 64.
    Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911PubMedCrossRefGoogle Scholar
  65. 65.
    Pap M, Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273:19929–19932PubMedCrossRefGoogle Scholar
  66. 66.
    Rui L, Yuan M, Frantz D (2002) SOCS-1 and SOCS-3 block insulin signaling by uniquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398PubMedCrossRefGoogle Scholar
  67. 67.
    Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446PubMedCrossRefGoogle Scholar
  68. 68.
    Jamieson E, Chong MM, Steinberg GR et al (2005) Socs1 deficiency enhances hepatic insulin signaling. J Biol Chem 280:31516–31521PubMedCrossRefGoogle Scholar
  69. 69.
    Nakajima K, Yamauchi K, Satishi S et al (2000) Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, HepG2 cells. J Biol Chem 275:20880–20886PubMedCrossRefGoogle Scholar
  70. 70.
    Cipok M, Aga-Mizrachi S, Bak A et al (2006) Protein kinase Calpha regulates insulin receptor signaling in skeletal muscle. Biochem Biophys Res Commun 345:817–824PubMedCrossRefGoogle Scholar
  71. 71.
    Sampson SR, Cooper DR (2006) Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 89:32–47PubMedCrossRefGoogle Scholar
  72. 72.
    Egawa K, Maegawa H, Shimizu S et al (2001) Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in L6 myocytes and Fao hepatoma cells. J Biol Chem 276:10207–10211PubMedCrossRefGoogle Scholar
  73. 73.
    Clampit JE, Meuth JL, Smith HT et al (2003) Reduction of protein-tyrosine phosphatase-1B increases insulin signaling in FAO hepatoma cells. Biochem Biophys Res Comm 300: 261–267PubMedCrossRefGoogle Scholar
  74. 74.
    Hirata AE, Alvarez-Rojas F, Carvalheira JBC (2003) Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci 73: 1369–1381PubMedCrossRefGoogle Scholar
  75. 75.
    Hotamisligil GS, Peraldi P, Budavari A et al (1996) IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271:665–668PubMedCrossRefGoogle Scholar
  76. 76.
    Kanety H, Feinstein R, Papa MZ et al (1995) Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1). J Biol Chem 270:23780–23784PubMedCrossRefGoogle Scholar
  77. 77.
    Kroder G, Bossenmaier B, Kellerer M et al (1996) Tumor necrosis factor-α- and hyperglycemia-induced insulin resistance. J Clin Invest 97:1471–1477PubMedCrossRefGoogle Scholar
  78. 78.
    Qiao LY, Goldberg JL, Russell JC et al (1999) Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem 274:10625–10632PubMedCrossRefGoogle Scholar
  79. 79.
    Qiao LY, Zhande R, Jetton TL et al (2002) In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem 277:26530–26539PubMedCrossRefGoogle Scholar
  80. 80.
    Bouzakri K, Roques M, Gual P et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325PubMedCrossRefGoogle Scholar
  81. 81.
    Rui L, Fisher TL, Thomas J et al (2001) Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 276:40362–40367PubMedGoogle Scholar
  82. 82.
    Werner ED, Lee J, Hansen L et al (2004) Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem 279:35298–35305PubMedCrossRefGoogle Scholar
  83. 83.
    Liberman Z, Eldar-Finkelman H (2005) Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. J Biol Chem 280: 4422–4428PubMedCrossRefGoogle Scholar
  84. 84.
    Sharfi H, Eldar-Finkelman H (2008) Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am J Physiol Endocrinol Metab 294:E307–E315CrossRefGoogle Scholar
  85. 85.
    Senn JJ, Klover PJ, Nowak IA et al (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399PubMedCrossRefGoogle Scholar
  86. 86.
    Senn JJ, Klover PJ, Nowak IA et al (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278:13740–13746PubMedCrossRefGoogle Scholar
  87. 87.
    Lee HC, Tian B, Sedivy JM et al (2006) Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology 131:1208–1217PubMedCrossRefGoogle Scholar
  88. 88.
    Bhavani K, de la Monte S, Brown NV et al (1995) Effect of ethanol on p36 protein kinase substrate and insulin receptor substrate 1 expression and tyrosyl phosphorylation in human hepatocellular carcinoma cells. Alcohol Clin Exp Res 19: 441–446PubMedCrossRefGoogle Scholar
  89. 89.
    de la Monte SM, Ganju N, Tanaka S et al (1999) Differential effects of ethanol on insulin-signaling through the insulin receptor substrate-1. Alcohol Clin Exp Res 23:770–777PubMedCrossRefGoogle Scholar
  90. 90.
    Xu YY, Bhavani K, Wands JR et al (1995) Ethanol inhibits insulin receptor substrate-1 tyrosine phosphorylation and insulin stimulated neuronal thread protein gene expression. Biochem J 310:125–132PubMedGoogle Scholar
  91. 91.
    He L, Simmen FA, Mehendale HM et al (2006) Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane. Role of TRB3 in inhibition of Akt/protein kinase B activation. J Biol Chem 281:11126–11134PubMedCrossRefGoogle Scholar
  92. 92.
    Onishi Y, Honda M, Ogihara T et al (2003) Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Comm 303:788–794PubMedCrossRefGoogle Scholar
  93. 93.
    Yao XH, Nyomba BL (2008) Hepatic insulin resistance induced by prenatal alcohol exposure is associated with reduced PTEN and TRB3 acetylation in adult rat offspring. Am J Physiol Regul Integr Comp Physiol 294:R1797–R1806Google Scholar
  94. 94.
    Yeon JE, Califano S, Xu J et al (2003) Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver. Hepatology 38:703–714PubMedCrossRefGoogle Scholar
  95. 95.
    de la Monte SM, Yeon JE, Tong M et al (2008) Insulin resistance in experimental alcohol-induced liver disease. J Gastroenterol Hepatol 23:e477–e486CrossRefGoogle Scholar
  96. 96.
    Dominici FP, Cifone D, Bartke A et al (1999) Loss of sensitivity to insulin at early events of the insulin signaling pathway in the liver of growth hormone-transgenic mice. J Endocrinol 161:383–392PubMedCrossRefGoogle Scholar
  97. 97.
    Dominici FP, Diaz GA, Bartke A et al (2000) Compensatory alterations of insulin signal transduction in liver of growth hormone receptor knockout mice. J Endocrinol 166: 579–590PubMedCrossRefGoogle Scholar
  98. 98.
    Dominici FP, Argentino DP, Munoz MC et al (2005) Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity. Growth Horm IGF Res 15:324–336PubMedCrossRefGoogle Scholar
  99. 99.
    Dominici FP, Turyn D (2002) Growth hormone-induced alterations in the insulin-signaling system. Exp Biol Med 227:149–157Google Scholar
  100. 100.
    Mounier C, Posner BI (2006) Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol 84:713–724PubMedCrossRefGoogle Scholar
  101. 101.
    Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183–189PubMedCrossRefGoogle Scholar
  102. 102.
    Kamagate A, Qu S, Perdomo G et al (2008) FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 118:2347–2364PubMedGoogle Scholar
  103. 103.
    Valenti L, Rametta R, Dongiovanni P et al (2008) Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 57:1355–1362PubMedCrossRefGoogle Scholar
  104. 104.
    Azzout-Marniche D, Becard D, Guichard C et al (2000) Insulin effects on sterol regulatory-element-binding ­protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J 350(Pt 2):389–393PubMedCrossRefGoogle Scholar
  105. 105.
    Foretz M, Pacot C, Dugail I et al (1999) ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol 19:3760–3768PubMedGoogle Scholar
  106. 106.
    Ribaux PG, Iynedjian PB (2003) Analysis of the role of protein kinase B (cAKT) in insulin-dependent induction of glucokinase and sterol regulatory element-binding protein 1 (SREBP1) mRNAs in hepatocytes. Biochem J 376:697–705PubMedCrossRefGoogle Scholar
  107. 107.
    Eberle D, Hegarty B, Bossard P et al (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848PubMedCrossRefGoogle Scholar
  108. 108.
    Kotzka J, Lehr S, Roth G et al(2004) Insulin-activated Erk-mitogen-activated protein kinases phosphorylate sterol regulatory element-binding Protein-2 at serine residues 432 and 455 in vivo. J Biol Chem 279:22404–22411PubMedCrossRefGoogle Scholar
  109. 109.
    Roth G, Kotzka J, Kremer L et al (2000) MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J Biol Chem 275:33302–33307PubMedCrossRefGoogle Scholar
  110. 110.
    Liang G, Yang J, Horton JD et al (2002) Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory ­element-binding protein-1c. J Biol Chem 277: 9520–9528PubMedCrossRefGoogle Scholar
  111. 111.
    Shimano H, Horton JD, Shimomura I et al (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99:846–854PubMedCrossRefGoogle Scholar
  112. 112.
    Matsuzaka T, Shimano H, Yahagi N et al (2004) Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes 53:560–569PubMedCrossRefGoogle Scholar
  113. 113.
    Ono H, Shimano H, Katagiri H et al (2003) Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 52:2905–2913PubMedCrossRefGoogle Scholar
  114. 114.
    Shimomura I, Bashmakov Y, Ikemoto S et al (1999) Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96:13656–13661PubMedCrossRefGoogle Scholar
  115. 115.
    Shimano H, Amemiya-Kudo M, Takahashi A et al (2007) Sterol regulatory element-binding protein-1c and pancreatic beta-cell dysfunction. Diabetes Obes Metab 9(Suppl 2):133–139PubMedCrossRefGoogle Scholar
  116. 116.
    Samson SL, Wong NC (2002) Role of Sp1 in insulin regulation of gene expression. J Mol Endocrinol 29:265–279PubMedCrossRefGoogle Scholar
  117. 117.
    Chakravarty K, Wu SY, Chiang CM et al (2004) SREBP-1c and Sp1 interact to regulate transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in the liver. J Biol Chem 279:15385–15395PubMedCrossRefGoogle Scholar
  118. 118.
    Finlay D, Patel S, Dickson LM et al (2004) Glycogen synthase kinase-3 regulates IGFBP-1 gene transcription through the thymine-rich insulin response element. BMC Mol Biol 5:15PubMedCrossRefGoogle Scholar
  119. 119.
    Barroso I, Santisteban P (1999) Insulin-induced early growth response gene (Egr-1) mediates a short term repression of rat malic enzyme gene transcription. J Biol Chem 274:17997–18004PubMedCrossRefGoogle Scholar
  120. 120.
    Porstmann T, Griffiths B, Chung YL et al (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24:6465–6481PubMedGoogle Scholar
  121. 121.
    Ma Z, Gibson SL, Byrne MA et al (2006) Suppression of insulin receptor substrate 1 (IRS-1) promotes mammary tumor metastasis. Mol Cell Biol 26:9338–9351PubMedCrossRefGoogle Scholar
  122. 122.
    Selman C, Lingard S, Choudhury AI et al (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. Faseb J 22: 807–818PubMedCrossRefGoogle Scholar
  123. 123.
    Simmons JG, Ling Y, Wilkins H et al (2007) Cell-specific effects of insulin receptor substrate-1 deficiency on normal and IGF-I-mediated colon growth. Am J Physiol Gastro­intest Liver Physiol 293:G995–G1003CrossRefGoogle Scholar
  124. 124.
    Freude S, Leeser U, Muller M et al (2008) IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination. J Neurochem 107:907–917PubMedGoogle Scholar
  125. 125.
    Kido Y, Burks DJ, Withers D et al (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 105:199–205PubMedCrossRefGoogle Scholar
  126. 126.
    Kubota N, Tobe K, Terauchi Y et al (2000) Distribution of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49:1880–1889PubMedCrossRefGoogle Scholar
  127. 127.
    Liu SCH, Wang Q, Lienhard GE et al (1999) Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem 274:18093–18099PubMedCrossRefGoogle Scholar
  128. 128.
    Laustsen PG, Michael D, Crute BE et al (2002) Lipoatrophic diabetes in Irs1–/–/Irs3–/–double knockout mice. Gene Dev 16:3213–3222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.The Liver Research CenterAlpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations