Advertisement

Fas/FasL

  • Maria Eugenia Guicciardi
  • Gregory J. GoresEmail author
Chapter

Abstract

Fas (CD95, APO-1) belongs to the death receptor family, a subgroup of the tumor necrosis factor/nerve growth factor (TNF/NGF) receptor superfamily. These cell surface cytokine receptors are able to initiate an apoptotic signaling cascade after binding a group of structurally related ligands or specific antibodies [1]. The members of this family are type-I transmembrane proteins with a C-terminal intracellular tail, a membrane spanning region, and an extracellular N-terminal domain. Through interaction with the N-terminal domain, the receptors bind their cognate ligands (called death ligands), the majority of which are type-II transmembrane proteins belonging to the TNF family of proteins and comprised of an intracellular N-terminal domain, a transmembrane region, and a C-terminal extracellular tail. The signature features of the death receptors are represented by a highly homologous region in their extracellular domains containing one to five cysteine-rich domains (CRD) and a ∼80-amino acid cytoplasmic sequence known as death domain (DD), which is required to initiate the death signal.

Keywords

Bile Acid Death Receptor Alcoholic Hepatitis Hepatocyte Apoptosis Death Induce Signaling Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260CrossRefPubMedGoogle Scholar
  2. 2.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312CrossRefPubMedGoogle Scholar
  3. 3.
    Canbay A, Feldstein AE, Higuchi H et al (2003) Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38:1188–1198CrossRefPubMedGoogle Scholar
  4. 4.
    Faubion WA, Gores GJ (1999) Death receptors in liver biology and pathobiology. Hepatology 29:1–4CrossRefPubMedGoogle Scholar
  5. 5.
    Adachi M, Suematsu S, Kondo T et al (1995) Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet 11:294–300CrossRefPubMedGoogle Scholar
  6. 6.
    Kagi D, Vignaux F, Ledermann B et al (1994) Fas and perforin pathways as major mechanisms of T-cell-mediated cytotoxicity. Science 265:528–530CrossRefPubMedGoogle Scholar
  7. 7.
    Lowin B, Hahne M, Mattmann C et al (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathyways. Nature 370:650–652CrossRefPubMedGoogle Scholar
  8. 8.
    Cascino I, Fiucci G, Papoff G et al (1995) Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol 154:2706–2713PubMedGoogle Scholar
  9. 9.
    Bennet M, MacDonald K, Chan S-W et al (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290–293CrossRefGoogle Scholar
  10. 10.
    Sodeman T, Bronk SF, Roberts PJ et al (2000) Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol 278:G992–G999Google Scholar
  11. 11.
    Feng G, Kaplowitz N (2000) Colchicine protects mice from the lethal effect of an agonistic anti-Fas antibody. J Clin Invest 105:329–339CrossRefPubMedGoogle Scholar
  12. 12.
    Peter ME, Hellbardt S, Schwartz-Albiez R et al (1995) Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death Differ 2:163–171PubMedGoogle Scholar
  13. 13.
    Chakrabandhu K, Herincs Z, Huault S et al (2007) Palmi­toylation is required for efficient Fas cell death signaling. Embo J 26:209–220CrossRefPubMedGoogle Scholar
  14. 14.
    Chan H, Bartos DP, Owen-Schaub LB (1999) Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50–p65 recruitment. Mol Cell Biol 19:2098–2108PubMedGoogle Scholar
  15. 15.
    Muller M, Strand S, Hug H et al (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO- 1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413CrossRefPubMedGoogle Scholar
  16. 16.
    Muller M, Wilder S, Bannasch D et al (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045CrossRefPubMedGoogle Scholar
  17. 17.
    Suda T, Takahashi T, Golstein P et al (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75:1169–1178CrossRefPubMedGoogle Scholar
  18. 18.
    Schneider P, Holler N, Bodmer JL et al (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187: 1205–1213CrossRefPubMedGoogle Scholar
  19. 19.
    Chan FK, Chun HJ, Zheng L et al (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354CrossRefPubMedGoogle Scholar
  20. 20.
    Feig C, Tchikov V, Schutze S et al (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. Embo J 26:221–231CrossRefPubMedGoogle Scholar
  21. 21.
    Henkler F, Behrle E, Dennehy KM et al (2005) The extracellular domains of FasL and Fas are sufficient for the ­formation of supramolecular FasL-Fas clusters of high stability. J Cell Biol 168:1087–1098CrossRefPubMedGoogle Scholar
  22. 22.
    Lee KH, Feig C, Tchikov V et al (2006) The role of receptor internalization in CD95 signaling. Embo J 25:1009–1023CrossRefPubMedGoogle Scholar
  23. 23.
    Lavrik IN, Mock T, Golks A et al (2008) CD95 stimulation results in the formation of a novel death effector domain protein-containing complex. J Biol Chem 283:26401–26408CrossRefPubMedGoogle Scholar
  24. 24.
    Siegel RM, Muppidi JR, Sarker M et al (2004) SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. J Cell Biol 167:735–744CrossRefPubMedGoogle Scholar
  25. 25.
    Legembre P, Daburon S, Moreau P et al (2006) Modulation of Fas-mediated apoptosis by lipid rafts in T lymphocytes.J Immunol 176:716–720PubMedGoogle Scholar
  26. 26.
    Chang DW, Xing Z, Pan Y et al (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. Embo J 21:3704–3714CrossRefPubMedGoogle Scholar
  27. 27.
    Rasper DM, Vaillancourt JP, Hadano S et al (1998) Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 5:271–288CrossRefPubMedGoogle Scholar
  28. 28.
    Micheau O, Thome M, Schneider P et al (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277: 45162–45171CrossRefPubMedGoogle Scholar
  29. 29.
    Dohrman A, Russell JQ, Cuenin S et al (2005) Cellular FLIP long form augments caspase activity and death of T cells through heterodimerization with and activation of caspase-8. J Immunol 175:311–318PubMedGoogle Scholar
  30. 30.
    Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. Embo J 17:1675–1687CrossRefPubMedGoogle Scholar
  31. 31.
    Li H, Zhu H, Xu CJ et al (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501CrossRefPubMedGoogle Scholar
  32. 32.
    Luo X, Budihardjo I, Zou H et al (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490CrossRefPubMedGoogle Scholar
  33. 33.
    Susin SA, Zamzami N, Castedo M et al (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341CrossRefPubMedGoogle Scholar
  34. 34.
    Du C, Fang M, Li Y et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42CrossRefPubMedGoogle Scholar
  35. 35.
    Verhagen AM, Ekert PG, Pakusch M et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53CrossRefPubMedGoogle Scholar
  36. 36.
    Higaki K, Yano H, Kojiro M (1996) Fas antigen expression and its relationship with apoptosis in human hepatocellular carcinoma and noncancerous tissues. Am J Pathol 149:429–437PubMedGoogle Scholar
  37. 37.
    Ito Y, Takeda T, Umeshita K et al (1998) Fas antigen expression in hepatocellular carcinoma tissues. Oncol Rep 5:41–44PubMedGoogle Scholar
  38. 38.
    Nagao M, Nakajima Y, Hisanaga M et al (1999) The alteration of Fas receptor and ligand system in hepatocellular carcinomas: how do hepatoma cells escape from the host immune surveillance in vivo? Hepatology 30:413–421CrossRefPubMedGoogle Scholar
  39. 39.
    Strand S, Hofmann WJ, Hug H et al (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nat Med 2:1361–1366CrossRefPubMedGoogle Scholar
  40. 40.
    Peter ME, Legembre P, Barnhart BC (2005) Does CD95 have tumor promoting activities? Biochim Biophys Acta 1755:25–36PubMedGoogle Scholar
  41. 41.
    Legembre P, Barnhart BC, Zheng L et al (2004) Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds. EMBO Rep 5:1084–1089CrossRefPubMedGoogle Scholar
  42. 42.
    Hahne M, Rimoldi D, Schroter M et al (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366CrossRefPubMedGoogle Scholar
  43. 43.
    Griffith TS, Brunner T, Fletcher SM et al (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192CrossRefPubMedGoogle Scholar
  44. 44.
    Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439CrossRefPubMedGoogle Scholar
  45. 45.
    Mochizuki K, Hayashi N, Hiramatsu N et al (1996) Fas antigen expression in liver tissues of patients with chronic hepatitis B. J Hepatol 24:1–7CrossRefPubMedGoogle Scholar
  46. 46.
    Luo KX, Zhu YF, Zhang LX et al (1997) In situ investigation of Fas/FasL expression in chronic hepatitis B infection and related liver diseases. J Viral Hepat 4:303–307CrossRefPubMedGoogle Scholar
  47. 47.
    Galle PR, Hofmann WJ, Walczak H et al (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 182:1223–1230CrossRefPubMedGoogle Scholar
  48. 48.
    Hiramatsu N, Hayashi N, Katayama K et al (1994) Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 19:1354–1359CrossRefPubMedGoogle Scholar
  49. 49.
    Yoneyama K, Goto T, Miura K et al (2002) The expression of Fas and Fas ligand, and the effects of interferon in chronic liver diseases with hepatitis C virus. Hepatol Res 24:327–337CrossRefPubMedGoogle Scholar
  50. 50.
    Terradillos O, de La Coste A, Pollicino T et al (2002) The hepatitis B virus X protein abrogates Bcl-2-mediated protection against Fas apoptosis in the liver. Oncogene 21: 377–386CrossRefPubMedGoogle Scholar
  51. 51.
    Pan J, Duan LX, Sun BS et al (2001) Hepatitis B virus X protein protects against anti-Fas-mediated apoptosis in human liver cells by inducing NF-kappa B. J Gen Virol 82: 171–182PubMedGoogle Scholar
  52. 52.
    Diao J, Khine AA, Sarangi F et al (2001) X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem 276:8328–8340CrossRefPubMedGoogle Scholar
  53. 53.
    Machida K, Tsukiyama-Kohara K, Seike E et al (2001) Inhibition of cytochrome c release in Fas-mediated signaling pathway in transgenic mice induced to express hepatitis C viral proteins. J Biol Chem 276:12140–12146CrossRefPubMedGoogle Scholar
  54. 54.
    Goldin RD, Hunt NC, Clark J et al (1993) Apoptotic bodies in a murine model of alcoholic liver disease: reversibility of ethanol-induced changes. J Pathol 171:73–76CrossRefPubMedGoogle Scholar
  55. 55.
    Benedetti A, Brunelli E, Risicato R et al (1988) Subcellular changes and apoptosis induced by ethanol in rat liver. J Hepatol 6:137–143CrossRefPubMedGoogle Scholar
  56. 56.
    Natori S, Rust C, Stadheim LM et al (2001) Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis. J Hepatol 34:248–253CrossRefPubMedGoogle Scholar
  57. 57.
    Kawahara H, Matsuda Y, Takase S (1994) Is apoptosis involved in alcoholic hepatitis? Alcohol Alcohol Suppl 29:113–118PubMedGoogle Scholar
  58. 58.
    McClain C, Hill D, Schmidt J et al (1993) Cytokines and alcoholic liver disease. Semin Liver Dis 13:170–182CrossRefPubMedGoogle Scholar
  59. 59.
    Costelli P, Aoki P, Zingaro B et al (2003) Mice lacking TNFα receptors 1 and 2 are resistant to death and fulminant liver injury induced by agonistic anti-Fas antibody. Cell Death Differ 10:997–1004CrossRefPubMedGoogle Scholar
  60. 60.
    Patel T, Bronk SF, Gores GJ (1994) Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes. J Clin Invest 94:2183–2192CrossRefPubMedGoogle Scholar
  61. 61.
    Faubion WA, Guicciardi ME, Miyoshi H et al (1999) Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 103:137–145CrossRefPubMedGoogle Scholar
  62. 62.
    Higuchi H, Bronk SF, Takikawa Y et al (2001) The bile acid glycochenodeoxycholate induces trail-receptor 2/DR5 expression and apoptosis. J Biol Chem 276:38610–38618CrossRefPubMedGoogle Scholar
  63. 63.
    Guicciardi ME, Gores GJ (2002) Bile acid-mediated hepatocyte apoptosis and cholestatic liver disease. Dig Liver Dis 34:387–392CrossRefPubMedGoogle Scholar
  64. 64.
    Miyoshi H, Rust C, Roberts PJ et al (1999) Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 117:669–677CrossRefPubMedGoogle Scholar
  65. 65.
    Guicciardi ME, Faubion WA, Bronk SF et al (2000) Mechanisms of bile acid-induced cell death. In: Andus T, Rogler G, Schlottmann K (eds) Cytokines and cell homeostasis in the gastrointestinal tract. Kluwer, Dordrecht, pp 284–289Google Scholar
  66. 66.
    Reinehr R, Becker S, Wettstein M et al (2004) Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology 127:1540–1557CrossRefPubMedGoogle Scholar
  67. 67.
    Eberle A, Reinehr R, Becker S et al (2007) CD95 tyrosine phosphorylation is required for CD95 oligomerization. Apoptosis 12:719–729CrossRefPubMedGoogle Scholar
  68. 68.
    Canbay A, Higuchi H, Bronk SF et al (2002) Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123:1323–1330CrossRefPubMedGoogle Scholar
  69. 69.
    Strand S, Hofmann WJ, Grambihler A et al (1998) Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med 4: 588–593CrossRefPubMedGoogle Scholar
  70. 70.
    Aust SD, Morehouse LA, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radic Biol Med 1:3–25CrossRefPubMedGoogle Scholar
  71. 71.
    Narayanan VS, Fitch CA, Levenson CW (2001) Tumor suppressor protein p53 mRNA and subcellular localization are altered by changes in cellular copper in human Hep G2 cells. J Nutr 131:1427–1432PubMedGoogle Scholar
  72. 72.
    Feldstein AE, Canbay A, Angulo P et al (2003) Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125: 437–443CrossRefPubMedGoogle Scholar
  73. 73.
    Feldstein AE, Canbay A, Guicciardi ME et al (2003) Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol 39:978–983CrossRefPubMedGoogle Scholar
  74. 74.
    Siebler J, Schuchmann M, Strand S et al (2007) Enhanced sensitivity to CD95-induced apoptosis in ob/ob mice. Dig Dis Sci 52:2396–2402CrossRefPubMedGoogle Scholar
  75. 75.
    Perez-Carreras M, Del Hoyo P, Martin MA et al (2003) Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38: 999–1007PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Mayo Clinic College of MedicineRochesterUSA

Personalised recommendations