Skip to main content

TNF/TNF Receptors

  • Chapter
  • First Online:
Signaling Pathways in Liver Diseases

Abstract

Tumor necrosis factor-α (TNF) is a pleiotropic cyto­kine whose biological functions regulate the cellular responses of injury and repair, inflammation and immunity, and proliferation. In the liver, TNF exerts autocrine and paracrine effects that mediate a variety of pathophysiological states that involve liver injury and cell death and/or hepatocellular proliferation. Thus, TNF is a central regulator of hepatic physiology and delineation of the complex signaling pathways that mediate the disparate effects of this cytokine has contributed to our understanding of its function. In particular, investigations have attempted to determine how this factor could promote either cell proliferation or death in hepatocytes under different physiologic circumstances. With these studies has come an increased understanding of the complex events that determine whether a hepatocyte undergoes apoptosis or proliferation following TNF stimulation. This chapter will focus initially on signaling events that follow TNF ligand–receptor interaction, and subsequently on the precise functions of TNF signaling in specific pathophysiologic states. Although considerable progress has been made in defining TNF signaling pathways in hepatocytes, the challenge remains to determine how these signal cascades regulate disease states in order to mani­pulate these pathways for the treatment of human liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kern PA, Ranganathan S, Li C et al (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745–E751

    Google Scholar 

  2. Loffreda S, Rai R, Yang SQ et al (1997) Bile ducts and portal and central veins are major producers of tumor necrosis factor α in regenerating rat liver. Gastroenterology 112:2089–2098

    PubMed  CAS  Google Scholar 

  3. Vandenabeele P, Declercq R, Beyaert W, Fiers W (1988) Two tumor necrosis factor receptors: structure and function. Trends Cell Biol 5:392–399

    Google Scholar 

  4. Banner DW, D’Arcy A, Janes W et al (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF β complex: implications for TNF receptor activation. Cell 73: 431–445

    PubMed  CAS  Google Scholar 

  5. Black RA, Rauch CT, Kozlosky CJ et al (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729–733

    PubMed  CAS  Google Scholar 

  6. Moss ML, Lambert MH (2002) Shedding of membrane proteins by ADAM family proteases. Essays Biochem 38: 141–153

    PubMed  CAS  Google Scholar 

  7. Amour A, Slocombe PM, Webster A et al (1998) TNF-α converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435:39–44

    PubMed  CAS  Google Scholar 

  8. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    PubMed  CAS  Google Scholar 

  9. Chan FK, Chun HJ, Zheng L et al (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354

    PubMed  CAS  Google Scholar 

  10. Wang H, Czura CJ, Tracey KJ (2003) Tumor necrosis factor. In: Thomson AW, Lotze MT (eds) The Cytokine Handbook, 4th edn. Academic, Amsterdam, pp 837–860

    Google Scholar 

  11. Grell M, Douni E, Wajant H et al (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83: 793–802

    PubMed  CAS  Google Scholar 

  12. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    PubMed  CAS  Google Scholar 

  13. Kresse M, Latta M, Kunstle G et al (2005) Kupffer cell-expressed membrane-bound TNF mediates melphalan hepatotoxicity via activation of both TNF receptors. J Immunol 175:4076–4083

    PubMed  CAS  Google Scholar 

  14. Hehlgans T, Seitz C, Lewis C, Mannel DN (2001) Hypoxic upregulation of TNF receptor type 2 expression involves NF-IL-6 and is independent of HIF-1 or HIF-2. J Interferon Cytokine Res 21:757–762

    PubMed  CAS  Google Scholar 

  15. Grell M, Wajant H, Zimmermann G, Scheurich P (1998) The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. PNAS 95:570–575

    PubMed  CAS  Google Scholar 

  16. Barbara JA, Smith WB, Gamble JR et al (1994) Dissociation of TNF-α cytotoxic and proinflammatory activities by p55 receptor and p75 receptor-selective TNF-α mutants. EMBO J 13:843–850

    PubMed  CAS  Google Scholar 

  17. Tartaglia LA, Pennica D, Goeddel DV (1993) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 268:18542–18548

    PubMed  CAS  Google Scholar 

  18. Fotin-Mleczek M, Henkler F, Samel D et al (2002) Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci 115:2757–2770

    PubMed  CAS  Google Scholar 

  19. Depuydt B, van Loo G, Vandenabeele P, Declercq W (2005) Induction of apoptosis by TNF receptor 2 in a T-cell hybridoma is FADD dependent and blocked by caspase-8 inhibitors. J Cell Sci 118:497–504

    PubMed  CAS  Google Scholar 

  20. Masli S, Turpie B (2008) Anti-inflammatory effects of tumour necrosis factor (TNF)-α are mediated via TNF-R2 (p75) in tolerogenic transforming growth factor-β-treated antigen-­presenting cells. Immunology 127:62–72

    Google Scholar 

  21. Baumel M, Lechner A, Hehlgans T, Mannel DN (2008) Enhanced susceptibility to Con A-induced liver injury in mice transgenic for the intracellular isoform of human TNF receptor type 2. J Leukoc Biol 84:162–169

    PubMed  Google Scholar 

  22. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160

    PubMed  CAS  Google Scholar 

  23. Peschon JJ, Slack JL, Reddy P et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284

    PubMed  CAS  Google Scholar 

  24. Streetz K, Leifeld L, Grundmann D et al (2000) Tumor necrosis factor α in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology 119:446–460

    PubMed  CAS  Google Scholar 

  25. Volpes R, van den Oord JJ, De Vos R, Desmet VJ (1992) Hepatic expression of type A and type B receptors for tumor necrosis factor. J Hepatol 14:361–369

    PubMed  CAS  Google Scholar 

  26. Czaja MJ, Xu J, Alt E (1995) Prevention of carbon tetrachloride-induced rat liver injury by soluble tumor necrosis factor receptor. Gastroenterology 108:1849–1854

    PubMed  CAS  Google Scholar 

  27. Legler DF, Micheau O, Doucey MA et al (2003) Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18:655–664

    PubMed  CAS  Google Scholar 

  28. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260

    PubMed  CAS  Google Scholar 

  29. Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308

    PubMed  CAS  Google Scholar 

  30. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    PubMed  CAS  Google Scholar 

  31. Bhardwaj A, Aggarwal BB (2003) Receptor-mediated choreography of life and death. J Clin Immunol 23:317–332

    PubMed  CAS  Google Scholar 

  32. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81:495–504

    PubMed  CAS  Google Scholar 

  33. Jiang Y, Woronicz JD, Liu W, Goeddel DV (1999) Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283:543–546

    PubMed  CAS  Google Scholar 

  34. Chinnaiyan AM, Tepper CG, Seldin MF et al (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 271:4961–4965

    PubMed  CAS  Google Scholar 

  35. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512

    PubMed  CAS  Google Scholar 

  36. Ermolaeva MA, Michallet MC, Papadopoulou N et al (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9:1037–1046

    PubMed  CAS  Google Scholar 

  37. Tibbetts MD, Zheng L, Lenardo MJ (2003) The death effector domain protein family: regulators of cellular homeostasis. Nat Immunol 4:404–409

    PubMed  CAS  Google Scholar 

  38. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  39. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mam­malian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    PubMed  CAS  Google Scholar 

  40. Kischkel FC, Hellbardt S, Behrmann I et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    PubMed  CAS  Google Scholar 

  41. Muzio M, Stockwell BR, Stennicke HR et al (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    PubMed  CAS  Google Scholar 

  42. Juo P, Kuo CJ, Yuan J, Blenis J (1998) Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8:1001–1008

    PubMed  CAS  Google Scholar 

  43. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    PubMed  CAS  Google Scholar 

  44. Yeh WC, Itie A, Elia AJ et al (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633–642

    PubMed  CAS  Google Scholar 

  45. Harper N, Hughes M, MacFarlane M, Cohen GM (2003) Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 278:25534–25541

    PubMed  CAS  Google Scholar 

  46. Bradham CA, Qian T, Streetz K et al (1998) The mitochondrial permeability transition is required for tumor necrosis factor α-mediated apoptosis and cytochrome c release. Mol Cell Biol 18:6353–6364

    PubMed  CAS  Google Scholar 

  47. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/ type II model. Semin Immunol 15:185–193

    PubMed  CAS  Google Scholar 

  48. Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    PubMed  CAS  Google Scholar 

  49. Zhao Y, Ding WX, Qian T et al (2003) Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology 125: 854–867

    PubMed  CAS  Google Scholar 

  50. Zhao Y, Li S, Childs EE et al (2001) Activation of pro-death Bcl-2 family proteins and mitochondria apoptosis pathway in tumor necrosis factor-α-induced liver injury. J Biol Chem 276:27432–27440

    PubMed  CAS  Google Scholar 

  51. Chen X, Ding WX, Ni HM et al (2007) Bid-independent mitochondrial activation in tumor necrosis factor α-induced apoptosis and liver injury. Mol Cell Biol 27:541–553

    PubMed  CAS  Google Scholar 

  52. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    PubMed  CAS  Google Scholar 

  53. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    PubMed  CAS  Google Scholar 

  54. de la Coste A, Fabre M, McDonell N et al (1999) Differential protective effects of Bcl-xL and Bcl-2 on apoptotic liver injury in transgenic mice. Am J Physiol 277:G702–G708

    Google Scholar 

  55. Van Molle W, Denecker G, Rodriguez I et al (1999) Activation of caspases in lethal experimental hepatitis and prevention by acute phase proteins. J Immunol 163:5235–5241

    PubMed  Google Scholar 

  56. Deng Y, Ren X, Yang L et al (2003) A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115:61–70

    PubMed  CAS  Google Scholar 

  57. Guicciardi ME, Deussing J, Miyoshi H et al (2000) Cathepsin B contributes to TNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137

    PubMed  CAS  Google Scholar 

  58. Werneburg N, Guicciardi ME, Yin XM, Gores GJ (2004) TNF-α-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 287:G436–G443

    Google Scholar 

  59. Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ (2002) Tumor necrosis factor-α-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol 283:G947–G956

    Google Scholar 

  60. Li S, Zhao Y, He X et al (2002) Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277:26912–26920

    PubMed  CAS  Google Scholar 

  61. Jones BE, Lo CR, Liu H et al (2000) Hepatocytes sensitized to tumor necrosis factor-α cytotoxicity undergo apoptosis through caspase-dependent and caspase-independent pathways. J Biol Chem 275:705–712

    PubMed  CAS  Google Scholar 

  62. Kunstle G, Hentze H, Germann PG et al (1999) Concanavalin A hepatotoxicity in mice: tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology 30:1241–1251

    PubMed  CAS  Google Scholar 

  63. Liu H, Jones BE, Bradham C, Czaja MJ (2002) Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-α. Am J Physiol Gastrointest Liver Physiol 282:G257–G266

    Google Scholar 

  64. Moorthy AK, Ghosh G (2003) p105-IκBγ and prototypical IκBs use a similar mechanism to bind but a different mechanism to regulate the subcellular localization of NF-κB. J Biol Chem 278:556–566

    PubMed  CAS  Google Scholar 

  65. Solan NJ, Miyoshi H, Carmona EM et al (2002) RelB cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 277:1405–1418

    PubMed  CAS  Google Scholar 

  66. Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109:S81–S96

    Google Scholar 

  67. Park YC, Ye H, Hsia C et al (2000) A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction. Cell 101:777–787

    PubMed  CAS  Google Scholar 

  68. Park YC, Burkitt V, Villa AR et al (1999) Structural basis for self-association and receptor recognition of human TRAF2. Nature 398:533–538

    PubMed  CAS  Google Scholar 

  69. Tada K, Okazaki T, Sakon S et al (2001) Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J Biol Chem 276: 36530–36534

    PubMed  CAS  Google Scholar 

  70. Perkins ND (2000) The Rel/NF-κB family: friend and foe. Trends Biochem Sci 25:434–440

    PubMed  CAS  Google Scholar 

  71. Devin A, Cook A, Lin Y et al (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12:419–429

    PubMed  CAS  Google Scholar 

  72. Devin A, Lin Y, Yamaoka S et al (2001) The α and β subunits of IκB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol 21:3986–3994

    PubMed  CAS  Google Scholar 

  73. Neumann M, Grieshammer T, Chuvpilo S et al (1995) RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A. EMBO J 14:1991–2004

    PubMed  CAS  Google Scholar 

  74. Leitges M, Sanz L, Martin P et al (2001) Targeted disruption of the ζPKC gene results in the impairment of the NF-κB pathway. Mol Cell 8:771–780

    PubMed  CAS  Google Scholar 

  75. Oliver FJ, Menissier-de Murcia J, Nacci C et al (1999) Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18:4446–4454

    PubMed  CAS  Google Scholar 

  76. Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr (2000) Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275:32592–32597

    PubMed  CAS  Google Scholar 

  77. Beg AA, Sha WC, Bronson RT et al (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376:167–170

    PubMed  CAS  Google Scholar 

  78. Alcamo E, Mizgerd JP, Horwitz BH et al (2001) Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment. J Immunol 167:1592–1600

    PubMed  CAS  Google Scholar 

  79. Xu Y, Bialik S, Jones BE et al (1998) NF-κB inactivation converts a hepatocyte cell line TNF-α response from proliferation to apoptosis. Am J Physiol 275:C1058–C1066

    Google Scholar 

  80. Osawa Y, Banno Y, Nagaki M et al (2001) TNF-α-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J Immunol 167:173–180

    PubMed  CAS  Google Scholar 

  81. Hatano E, Brenner DA (2001) Akt protects mouse hepatocytes from TNF-α- and Fas-mediated apoptosis through NK-κB activation. Am J Physiol Gastrointest Liver Physiol 281: G1357–G1368

    Google Scholar 

  82. Li Q, Van Antwerp D, Mercurio F et al (1999) Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284:321–325

    PubMed  CAS  Google Scholar 

  83. Rudolph D, Yeh WC, Wakeham A et al (2000) Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev 14:854–862

    PubMed  CAS  Google Scholar 

  84. Luedde T, Assmus U, Wustefeld T et al (2005) Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 115:849–859

    PubMed  CAS  Google Scholar 

  85. Beraza N, Ludde T, Assmus U et al (2007) Hepatocyte-specific IKK γ/NEMO expression determines the degree of liver injury. Gastroenterology 132:2504–2517

    PubMed  CAS  Google Scholar 

  86. Leist M, Gantner F, Bohlinger I et al (1994) Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-α requires transcriptional arrest. J Immunol 153:1778–1788

    PubMed  CAS  Google Scholar 

  87. Hatano E, Bennett BL, Manning AM et al (2001) NF-κB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-α- and Fas-mediated apoptosis. Gastroenterology 120:1251–1262

    PubMed  CAS  Google Scholar 

  88. Liu H, Lo CR, Czaja MJ (2002) NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology 35:772–778

    PubMed  CAS  Google Scholar 

  89. Czaja MJ (2003) The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastrointest Liver Physiol 284:G875–G879

    Google Scholar 

  90. Chang L, Kamata H, Solinas G et al (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613

    PubMed  CAS  Google Scholar 

  91. De Smaele E, Zazzeroni F, Papa S et al (2001) Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    PubMed  Google Scholar 

  92. Schwabe RF, Uchinami H, Qian T et al (2004) Differential requirement for c-Jun NH2-terminal kinase in TNFα- and Fas-mediated apoptosis in hepatocytes. FASEB J 18:720–722

    PubMed  CAS  Google Scholar 

  93. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    PubMed  CAS  Google Scholar 

  94. Tuncman G, Hirosumi J, Solinas G et al (2006) Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A 103:10741–10746

    PubMed  CAS  Google Scholar 

  95. Wang Y, Singh R, Lefkowitch JH et al (2006) Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. J Biol Chem 281:15258–15267

    PubMed  CAS  Google Scholar 

  96. Ni HM, Chen X, Ding WX et al (2008) Differential roles of JNK in ConA/GalN and ConA-induced liver injury in mice. Am J Pathol 173:962–972

    Google Scholar 

  97. Lee TH, Huang Q, Oikemus S et al (2003) The death domain kinase RIP1 is essential for tumor necrosis factor α signaling to p38 mitogen-activated protein kinase. Mol Cell Biol 23:8377–8385

    PubMed  CAS  Google Scholar 

  98. Akerman P, Cote P, Yang SQ et al (1992) Antibodies to tumor necrosis factor-α inhibit liver regeneration after partial hepatectomy. Am J Physiol 263:G579–G585

    Google Scholar 

  99. Yamada Y, Kirillova I, Peschon JJ, Fausto N (1997) Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci U S A 94:1441–1446

    PubMed  CAS  Google Scholar 

  100. Yamada Y, Webber EM, Kirillova I et al (1998) Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: requirement for type 1 but not type 2 receptor. Hepatology 28:959–970

    PubMed  CAS  Google Scholar 

  101. Yamada Y, Fausto N (1998) Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol 152: 1577–1589

    PubMed  CAS  Google Scholar 

  102. Cressman DE, Greenbaum LE, DeAngelis RA et al (1996) Liver failure and defective hepatocyte regeneration in interleukin- 6-deficient mice. Science 274:1379–1383

    PubMed  CAS  Google Scholar 

  103. Li W, Liang X, Kellendonk C et al (2002) STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. J Biol Chem 277:28411–28417

    PubMed  CAS  Google Scholar 

  104. Blindenbacher A, Wang X, Langer I et al (2003) Interleukin 6 is important for survival after partial hepatectomy in mice. Hepatology 38:674–682

    PubMed  CAS  Google Scholar 

  105. Sakamoto T, Liu Z, Murase N et al (1999) Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology 29:403–411

    PubMed  CAS  Google Scholar 

  106. Wuestefeld T, Klein C, Streetz KL et al (2003) Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration. J Biol Chem 278:11281–11288

    PubMed  CAS  Google Scholar 

  107. Dierssen U, Beraza N, Lutz HH et al (2008) Molecular dissection of gp130-dependent pathways in hepatocytes during liver regeneration. J Biol Chem 283:9886–9895

    PubMed  CAS  Google Scholar 

  108. Iimuro Y, Nishiura T, Hellerbrand C et al (1998) NF-κB prevents apoptosis and liver dysfunction during liver regeneration. J Clin Invest 101:802–811

    PubMed  CAS  Google Scholar 

  109. DeAngelis RA, Kovalovich K, Cressman DE, Taub R (2001) Normal liver regeneration in p50/nuclear factor κB1 knockout mice. Hepatology 33:915–924

    PubMed  CAS  Google Scholar 

  110. Rai RM, Lee FY, Rosen A et al (1998) Impaired liver regeneration in inducible nitric oxide synthase deficient mice. Proc Natl Acad Sci U S A 95:13829–13834

    PubMed  CAS  Google Scholar 

  111. Chaisson ML, Brooling JT, Ladiges W et al (2002) Hepatocyte-specific inhibition of NF-κB leads to apoptosis after TNF treatment, but not after partial hepatectomy. J Clin Invest 110:193–202

    PubMed  CAS  Google Scholar 

  112. Maeda S, Chang L, Li ZW et al (2003) IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα. Immunity 19:725–737

    PubMed  CAS  Google Scholar 

  113. Malato Y, Sander LE, Liedtke C et al (2008) Hepatocyte-specific inhibitor-of-κB-kinase deletion triggers the innate immune response and promotes earlier cell proliferation during liver regeneration. Hepatology 47:2036–2050

    PubMed  CAS  Google Scholar 

  114. Akerman PA, Cote PM, Yang SQ et al (1993) Long-term ethanol consumption alters the hepatic response to the regenerative effects of tumor necrosis factor-α. Hepatology 17:1066–1073

    PubMed  CAS  Google Scholar 

  115. Yang SQ, Lin HZ, Yin M et al (1998) Effects of chronic ethanol consumption on cytokine regulation of liver regeneration. Am J Physiol 275:G696–G704

    Google Scholar 

  116. Czaja MJ, Flanders KC, Biempica L et al (1989) Expression of tumor necrosis factor-α and transforming growth factor-β 1 in acute liver injury. Growth Factors 1:219–226

    PubMed  CAS  Google Scholar 

  117. McClain CJ, Hill DB, Song Z et al (2002) Monocyte activation in alcoholic liver disease. Alcohol 27:53–61

    PubMed  CAS  Google Scholar 

  118. Morio LA, Chiu H, Sprowles KA et al (2001) Distinct roles of tumor necrosis factor-α and nitric oxide in acute liver injury induced by carbon tetrachloride in mice. Toxicol Appl Pharmacol 172:44–51

    PubMed  CAS  Google Scholar 

  119. Yin M, Wheeler MD, Kono H et al (1999) Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice. Gastroenterology 117:942–952

    PubMed  CAS  Google Scholar 

  120. Honchel R, Marsano L, Cohen D et al (1991) Lead enhances lipopolysaccharide and tumor necrosis factor liver injury. J Lab Clin Med 117:202–208

    PubMed  CAS  Google Scholar 

  121. Czaja MJ, Schilsky ML, Xu Y et al (1994) Induction of MnSOD gene expression in a hepatic model of TNF-α toxicity does not result in increased protein. Am J Physiol 266:G737–G744

    Google Scholar 

  122. Xu Y, Jones BE, Neufeld DS, Czaja MJ (1998) Glutathione modulates rat and mouse hepatocyte sensitivity to tumor necrosis factor toxicity. Gastroenterology 115:1229–1237

    PubMed  CAS  Google Scholar 

  123. Lou H, Kaplowitz N (2007) Glutathione depletion down-regulates tumor necrosis factor α-induced NF-κB activity via IκB kinase-dependent and -independent mechanisms. J Biol Chem 282:29470–29481

    PubMed  CAS  Google Scholar 

  124. Colell A, Garcia-Ruiz C, Miranda M et al (1998) Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology 115:1541–1551

    PubMed  CAS  Google Scholar 

  125. Mandrekar P, Catalano D, Jeliazkova V, Kodys K (2008) Alcohol exposure regulates heat shock transcription factor binding and heat shock proteins 70 and 90 in monocytes and macrophages: implication for TNF-α regulation. J Leukoc Biol 84:1335–1345

    Google Scholar 

  126. Haouzi D, Lekehal M, Tinel M et al (2001) Prolonged, but not acute, glutathione depletion promotes Fas-mediated mitochondrial permeability transition and apoptosis in mice. Hepatology 33:1181–1188

    PubMed  CAS  Google Scholar 

  127. Koteish A, Yang S, Lin H et al (2002) Chronic ethanol exposure potentiates lipopolysaccharide liver injury despite inhibiting Jun N-terminal kinase and caspase 3 activation. J Biol Chem 277:13037–13044

    PubMed  CAS  Google Scholar 

  128. Li J, Bombeck CA, Yang S et al (1999) Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem 274:17325–17333

    PubMed  CAS  Google Scholar 

  129. Arvelo MB, Cooper JT, Longo C et al (2002) A20 protects mice from D-galactosamine/lipopolysaccharide acute toxic lethal hepatitis. Hepatology 35:535–543

    PubMed  CAS  Google Scholar 

  130. Sass G, Shembade ND, Haimerl F et al (2007) TNF pretreatment interferes with mitochondrial apoptosis in the mouse liver by A20-mediated down-regulation of Bax. J Immunol 179:7042–7049

    PubMed  CAS  Google Scholar 

  131. Tracey D, Klareskog L, Sasso EH et al (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279

    PubMed  CAS  Google Scholar 

  132. Naveau S, Chollet-Martin S, Dharancy S et al (2004) A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology 39:1390–1397

    PubMed  CAS  Google Scholar 

  133. Spahr L, Rubbia-Brandt L, Frossard JL et al (2002) Combination of steroids with infliximab or placebo in severe alcoholic hepatitis: a randomized controlled pilot study. J Hepatol 37:448–455

    PubMed  CAS  Google Scholar 

  134. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    PubMed  CAS  Google Scholar 

  135. Marchesini G, Bugianesi E, Forlani G et al (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917–923

    PubMed  Google Scholar 

  136. Diehl AM (2005) Lessons from animal models of NASH. Hepatol Res 33:138–144

    PubMed  CAS  Google Scholar 

  137. De Taeye BM, Novitskaya T, McGuinness OP et al (2007) Macrophage TNF-α contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am J Physiol Endocrinol Metab 293:E713–E725

    Google Scholar 

  138. Dela PA, Leclercq I, Field J et al (2005) NF-κB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology 129: 1663–1674

    Google Scholar 

  139. Nguyen MT, Satoh H, Favelyukis S et al (2005) JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3–L1 adipocytes. J Biol Chem 280:35361–35371

    PubMed  CAS  Google Scholar 

  140. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389:610–614

    PubMed  CAS  Google Scholar 

  141. Endo M, Masaki T, Seike M, Yoshimatsu H (2007) TNF-α induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood) 232:614–621

    CAS  Google Scholar 

  142. Crespo J, Cayon A, Fernandez-Gil P et al (2001) Gene expres­sion of tumor necrosis factor α and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34:1158–1163

    PubMed  CAS  Google Scholar 

  143. Hui JM, Hodge A, Farrell GC et al (2004) Beyond insulin resistance in NASH: TNF-α or adiponectin? Hepatology 40:46–54

    PubMed  CAS  Google Scholar 

  144. Ruiz AG, Casafont F, Crespo J et al (2007) Lipopoly­saccharide-binding protein plasma levels and liver TNF-α gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg 17:1374–1380

    PubMed  Google Scholar 

  145. Poniachik J, Csendes A, Diaz JC et al (2006) Increased production of IL-1α and TNF-α in lipopolysaccharide-­stimulated blood from obese patients with non-alcoholic fatty liver disease. Cytokine 33:252–257

    PubMed  CAS  Google Scholar 

  146. Tokushige K, Takakura M, Tsuchiya-Matsushita N et al (2007) Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol 46: 1104–1110

    PubMed  CAS  Google Scholar 

  147. Valenti L, Fracanzani AL, Dongiovanni P et al (2002) Tumor necrosis factor α promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastro­enterology 122:274–280

    PubMed  CAS  Google Scholar 

  148. Tokushige K, Hashimoto E, Tsuchiya N et al (2005) Clinical significance of soluble TNF receptor in Japanese patients with non-alcoholic steatohepatitis. Alcohol Clin Exp Res 29:298S–303S

    PubMed  CAS  Google Scholar 

  149. Kummee P, Tangkijvanich P, Poovorawan Y, Hirankarn N (2007) Association of HLA-DRB1*13 and TNF-α gene polymorphisms with clearance of chronic hepatitis B infection and risk of hepatocellular carcinoma in Thai population. J Viral Hepat 14:841–848

    PubMed  CAS  Google Scholar 

  150. Suneetha PV, Sarin SK, Goyal A et al (2006) Association between vitamin D receptor, CCR5, TNF-α and TNF-β gene polymorphisms and HBV infection and severity of liver disease. J Hepatol 44:856–863

    PubMed  CAS  Google Scholar 

  151. Biermer M, Puro R, Schneider RJ (2003) Tumor necrosis factor α inhibition of hepatitis B virus replication involves disruption of capsid integrity through activation of NF-κB. J Virol 77:4033–4042

    PubMed  CAS  Google Scholar 

  152. Shi H, Guan SH (2008) Increased apoptosis in HepG2.2.15 cells with hepatitis B virus expression by synergistic induction of interferon-gamma and tumour necrosis factor-α. Liver Int 29:349–355

    PubMed  Google Scholar 

  153. Yared G, Hussain KB, Nathani MG et al (1998) Cytokine-mediated apoptosis and inhibition of virus production and anchorage independent growth of viral transfected hepatoblastoma cells. Cytokine 10:586–595

    PubMed  CAS  Google Scholar 

  154. Kim WH, Hong F, Jaruga B et al (2005) Hepatitis B virus X protein sensitizes primary mouse hepatocytes to ethanol- and TNF-α-induced apoptosis by a caspase-3-dependent mechanism. Cell Mol Immunol 2:40–48

    PubMed  CAS  Google Scholar 

  155. Wang WH, Gregori G, Hullinger RL, Andrisani OM (2004) Sustained activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase pathways by hepatitis B virus X protein mediates apoptosis via induction of Fas/FasL and tumor necrosis factor (TNF) ­receptor 1/TNF-α expression. Mol Cell Biol 24: 10352–10365

    PubMed  CAS  Google Scholar 

  156. Kim KH, Seong BL (2003) Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. EMBO J 22: 2104–2116

    PubMed  CAS  Google Scholar 

  157. Su F, Theodosis CN, Schneider RJ (2001) Role of NF-κB and myc proteins in apoptosis induced by hepatitis B virus HBx protein. J Virol 75:215–225

    PubMed  CAS  Google Scholar 

  158. Hassan M, Ghozlan H, Abdel-Kader O (2005) Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology 333:324–336

    PubMed  CAS  Google Scholar 

  159. Hassan M, Selimovic D, Ghozlan H, Abdel-Kader O (2007) Induction of high-molecular-weight (HMW) tumor necrosis factor(TNF) α by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-κB-dependent activation. Cell Signal 19:301–311

    PubMed  CAS  Google Scholar 

  160. Marusawa H, Hijikata M, Chiba T, Shimotohno K (1999) Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor α-mediated apoptosis via NF-κB activation. J Virol 73:4713–4720

    PubMed  CAS  Google Scholar 

  161. Zhu N, Khoshnan A, Schneider R et al (1998) Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol 72:3691–3697

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by National Institutes of Health grants DK044234 and DK061498 to MJC and a Deutsche Forschungsgemeinschaft (DFG) grant to JMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Czaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schattenberg, J.M., Czaja, M.J. (2010). TNF/TNF Receptors. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics