Advertisement

Flow Analysis of Augmented High-Lift Systems

  • R. Radespiel
  • K. -C. Pfingsten
  • C. Jensch
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 102)

Summary

Recent progress in numerical flow simulation methods and flow measurement techniques opens up new potentials for designing and optimizing augmented high-lift systems. This research is directed towards substantially higher lift coefficients, needed for future generations of quiet transport aircraft with short take-off and landing capabilities. Based upon a review of several decades of powered lift research the present investigations focus on advanced circulation control concepts and their integration with modern transonic wing sections. The gains of blowing moderate amounts of compressed air over carefully selected Coanda surfaces are studied. Numerical flow field analysis is used to identify performance sensitivities and explore the design parameter space. Directions of future research needed to mature this technology for transport aircraft applications are identified and discussed.

Keywords

Lift Coefficient Maximum Lift Circulation Control Momentum Coefficient Boundary Layer Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wings with Nozzle Shaped Slots. NACA Translation TM 521, July 1929, from Berichte der Aerodynamischen Versuchsanstalt in Wien 1(1) (1928)Google Scholar
  2. 2.
    Bamber, M.J.: Wind tunnel tests on airfoil boundary layer control using a backward-opening slot. NACA Report 385 (1932)Google Scholar
  3. 3.
    Hagedorn, H., Ruden, P.: Windkanaluntersuchungen an einem Junkers- Doppelflügel mit Ausblaseschlitz am Heck des Hauptflügel. Bericht A64 der Lilienthal-Gesellschaft für Luftfahrtforschung (1938)Google Scholar
  4. 4.
    Schlichting, H.: Aerodynamische Probleme des Höchstauftriebes. Z. Flugwiss. 13(1), 1–14 (1965)MathSciNetGoogle Scholar
  5. 5.
    Nielsen, J.N., Biggers, J.C.: Recent Progress in Circultion Control Aerodynamics. AIAA Paper 87-001 (1987)Google Scholar
  6. 6.
    Yaros, S.F., et al.: Synergistic Airframe-Propulsion Interactions and Integrations. NASA/TM-1998-207644 (1998)Google Scholar
  7. 7.
    Stephens, V.C., Riddle, D.W., Martin, J.L., Innis, R.C.: Powered-Lift STOL Aircraft Shipboard Operations – A Comparison of Simulation, Land-Based and Sea Trial Results for the QSRA. AIAA Paper 81-2480 (1981)Google Scholar
  8. 8.
    Pfingsten, K.-C., Radespiel, R.: Use of upper surface blowing and circulation control for gapless high lift configurations. In: CEAS/KATnet Conference on Key Aerodynamic Technologies, Bremen, June 20–22 (2005)Google Scholar
  9. 9.
    Davidson, I.M.: Aerofoil Boundary Layer Control System. British Patent No. 913, 754 (1960)Google Scholar
  10. 10.
    Kind, R.J., Maull, D.J.: An Experimental Investigation of a Low-Speed Circulation Controlled Airfoil. The Aeronautical Quarterly, vol. XIX, pp.170–182 (May 1968)Google Scholar
  11. 11.
    Englar, R.J., Applegate, C.A.: Circulation Control – A Bibliography of DTNSRDC Research and Selected Outside References (January 1969 through December 1983). DTNSRDC-84/052 (September 1984)Google Scholar
  12. 12.
    Englar, R.J.: Overview of Circulation Control Pneumatic Aerodynamics: Blown Force and Moment Augmentation and Modification as Applied Primarily to Fixed- Wing Aircraft. In: Joslin, D., Jones, G.S. (eds.) Applications of Circulation Control Technology, Progress in Astronautics and Aeronautics, vol. 214, AIAA (2006)Google Scholar
  13. 13.
    Englar, R.J., Williams, R.M.: Design of Circulation Controlled Stern Plane for Submarine Applications. DTNSRDC, Technical Note AL-200, AD901-198 (1971)Google Scholar
  14. 14.
    Thomas, F.: Untersuchungen über die Grenzschichtbeeinflussung durch Ausblasen zur Erhöhung des Auftriebes. Dissertation, Institut für Strömungsmechanik, TU Braunschweig (1961); Gekürzte Fassung: Z. Flugwiss., vol. 10, pp. 46–65 (1962)Google Scholar
  15. 15.
    Gersten, K., Löhr, R.: Untersuchungen über die Auftriebserhöhung eines Tragflügels bei gleichzeitigem Ausblasen an der Hinterkantenklappe und an der Profilnase. Institutsbericht 62/34, Institut für Strömungsmechanik der Technischen Universität Braunschweig (1962)Google Scholar
  16. 16.
    Englar, R.J.: Circulation Control for High Lift and Drag Generation on STOL Aircraft. AIAA Journal of Aircraft 12(5), pp. 457–463 (1975)Google Scholar
  17. 17.
    Englar, R.J.: Low Speed Aerodynamic Characteristics of a Small Fixed Trailing Edge Circulation Control Wing Configuration Fitted to a Supercritical Airfoil. DTNSRDC, Rept. ASED-81/08 (March 1981)Google Scholar
  18. 18.
    Jones, G.S.: Pneumatic Flap Performance for a Two-Dimensional Circulation Control Airfoil. In: Joslin, D., Jones, G.S. (eds.) Applications of Circulation Control Technology, Progress in Astronautics and Aeronautics, vol. 214, AIAA (2006)Google Scholar
  19. 19.
    Englar, R.J., Huson, G.G.: Development of Advanced Circulation Control Using High-Lift Airfoils. Journal of Aircraft, 21(7), pp. 476–483 (1984)Google Scholar
  20. 20.
    Jones, G.S., Yao, C.-S., Allan, B.G.: Experimental Investigation of a 2D Supercritical Circulation-Control Airfoil Using Particle Image Velocimetry. AIAA Paper 2006-3009 (2006)Google Scholar
  21. 21.
    Abramson, J.: Characteristics of a Cambered Circulation Control Airfoil Having Both Upper and Lower Surface Trailing Edge Slots. NSWCCD-50-TR-2004/030 (April 2004)Google Scholar
  22. 22.
    Rogers, E.O., Donnelly, M.J.: Characteristics of a Dual-Slotted Circulations Control Wing of Low Aspect Ratio Intended for Naval Hydrodynamic Applications. AIAA Paper 2004-1244 (2004)Google Scholar
  23. 23.
    Joslin, R.D., Jones, G.S.: Applications of Circulation Control Technology. In: Progress in Astronautics and Aeronautics, vol. 214. AIAA (2006)Google Scholar
  24. 24.
    Novak, C.J., Cornelius, K.C., Roads, R.K.: Experimental Investigations of the Circular Wall Jet on a Circulation Control Airfoil. AIAA Paper 87-0155 (1987)Google Scholar
  25. 25.
    Gerhold, T.: Overview of the hybrid RANS code TAU. In: MEGAFLOW – Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89, pp. 81–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92-0439 (1992)Google Scholar
  27. 27.
    Spalart, P.R., Shur, M.: On the Sensitization of Turbulence Models to Rotation and Curvature. Aerospace Science and Technology 5, 297–302 (1997)CrossRefGoogle Scholar
  28. 28.
    Spalart, P.R.: Evaluation of Simplified Rotation/Curvature Correction. Personal Communication (2006)Google Scholar
  29. 29.
    Swanson, R.C., Rumsey, C.L., Anders, S.G.: Progress towards Computational Method for Circulation Control Airfoils. AIAA Paper 2005-0089 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. Radespiel
    • 1
  • K. -C. Pfingsten
    • 1
  • C. Jensch
    • 1
  1. 1.Institut für StrömungsmechanikTU BraunschweigBraunschweigGermany

Personalised recommendations