The Giant Component in a Random Subgraph of a Given Graph

  • Fan Chung
  • Paul Horn
  • Linyuan Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5427)

Abstract

We consider a random subgraph Gp of a host graph G formed by retaining each edge of G with probability p. We address the question of determining the critical value p (as a function of G) for which a giant component emerges. Suppose G satisfies some (mild) conditions depending on its spectral gap and higher moments of its degree sequence. We define the second order average degree \(\tilde{d}\) to be \(\tilde{d}=\sum_v d_v^2/(\sum_v d_v)\) where dv denotes the degree of v. We prove that for any ε> 0, if \(p > (1+ \epsilon)/{\tilde d}\) then asymptotically almost surely the percolated subgraph Gp has a giant component. In the other direction, if \(p < (1-\epsilon)/\tilde{d}\) then almost surely the percolated subgraph Gp contains no giant component.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Benjamini, I., Stacey, A.: Percolation on finite graphs and isoperimetric inequalities. Annals of Probability 32(3), 1727–1745 (2004)MathSciNetMATHGoogle Scholar
  2. 2.
    Ajtai, M., Komlós, J., Szemerédi, E.: Largest random component of a k-cube. Combinatorica 2, 1–7 (1982)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bollobas, B., Kohayakawa, Y., Łuczak, T.: The evolution of random subgraphs of the cube. Random Structures and Algorithms 3(1), 55–90 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bollobas, B., Borgs, C., Chayes, J., Riordan, O.: Percolation on dense graph sequences (preprint)Google Scholar
  5. 5.
    Borgs, C., Chayes, J., van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Random Structures and Algorithms 27(2), 137–184 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Borgs, C., Chayes, J., van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs. III. The scaling window under the triangle condition. Combinatorica 26(4), 395–410 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chung, F.: Spectral Graph Theory. AMS Publications (1997)Google Scholar
  8. 8.
    Chung, F., Lu, L., Vu, V.: The spectra of random graphs with given expected degrees. Internet Mathematics 1, 257–275 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annals of Combinatorics 6, 125–145 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chung, F., Lu, L.: Complex Graphs and Networks. AMS Publications (2006)Google Scholar
  11. 11.
    Erdős, P., Rényi, A.: On Random Graphs I. Publ. Math Debrecen 6, 290–297 (1959)MathSciNetMATHGoogle Scholar
  12. 12.
    Frieze, A., Krivelevich, M., Martin, R.: The emergence of a giant component of pseudo-random graphs. Random Structures and Algorithms 24, 42–50 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Grimmett, G.: Percolation. Springer, New York (1989)MATHGoogle Scholar
  14. 14.
    Kesten, H.: Percolation theory for mathematicians. In: Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston (1982)Google Scholar
  15. 15.
    Malon, C., Pak, I.: Percolation on finite cayley graphs. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 91–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Nachmias, A.: Mean-field conditions for percolation in finite graphs (preprint, 2007)Google Scholar
  17. 17.
    Nachmias, A., Peres, Y.: Critical percolation on random regular graphs (preprint, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fan Chung
    • 1
  • Paul Horn
    • 1
  • Linyuan Lu
    • 2
  1. 1.University of CaliforniaSan DiegoUSA
  2. 2.University of South CarolinaUSA

Personalised recommendations