Approximating the Number of Network Motifs

  • Mira Gonen
  • Yuval Shavitt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5427)

Abstract

World Wide Web, the Internet, coupled biological and chemical systems, neural networks, and social interacting species, are only a few examples of systems composed by a large number of highly interconnected dynamical units. These networks contain characteristic patterns, termed network motifs, which occur far more often than in randomized networks with the same degree sequence. Several algorithms have been suggested for counting or detecting the number of induced or non-induced occurrences of network motifs in the form of trees and bounded treewidth subgraphs of size O(logn), and of size at most 7 for some motifs.

In addition, counting the number of motifs a node is part of was recently suggested as a method to classify nodes in the network. The promise is that the distribution of motifs a node participate in is an indication of its function in the network. Therefore, counting the number of network motifs a node is part of provides a major challenge. However, no such practical algorithm exists.

We present several algorithms with time complexity \(O\left(e^{2k}k\cdot n \cdot |E|\cdot \right.\)\(\left.\log\frac{1}{\delta}/{\epsilon^2}\right)\) that, for the first time, approximate for every vertex the number of non-induced occurrences of the motif the vertex is part of, for k-length cycles, k-length cycles with a chord, and (k − 1)-length paths, where k = O(logn), and for all motifs of size of at most four. In addition, we show algorithms that approximate the total number of non-induced occurrences of these network motifs, when no efficient algorithm exists. Some of our algorithms use the color coding technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif counting and discovery by color coding. Bioinformatics 1, 1–9 (2008)Google Scholar
  2. 2.
    Alon, N., Gutner, S.: Balanced families of perfect hash functions and their applications. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 435–446. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arvind, V., Raman, V.: Approximation algorithms for some parameterized counting problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 453–464. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 16–24 (2008)Google Scholar
  6. 6.
    Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A tool for querying protein interaction networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Gonen, M., Shavitt, Y.: Approximating the number of network motifs. Technical report, School of Electrical Enjeneering, Tel Aviv University (2008)Google Scholar
  8. 8.
    Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 92–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Hales, D., Arteconi, S.: Motifs in evolving cooperative networks look like protein structure networks. Special Issue of ECCS 2007 in The Journal of Networks and Heterogeneous Media 3(2), 239–249 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Hormozdiari, F., Berenbrink, P., Przulj, N., Sahinalp, S.C.: Not all scale-free networks are born equal: The role of the seed graph in ppi network evolution. PLoS: Computational Biology 3(7), e118 (2007)CrossRefGoogle Scholar
  11. 11.
    Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746 (2004)CrossRefGoogle Scholar
  12. 12.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  13. 13.
    Przulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)CrossRefGoogle Scholar
  14. 14.
    Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: Scale- free or geometric? Bioinformatics 150, 216–231 (2005)Google Scholar
  15. 15.
    Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 1–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Shlomi, T., Segal, D., Ruppin, E.: QPath: a method for querying pathways in a protein-protein interaction network. Bioinformatics 7, 199 (2006)Google Scholar
  17. 17.
    Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 347–359 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mira Gonen
    • 1
  • Yuval Shavitt
    • 1
  1. 1.Tel-Aviv UniversityRamat AvivIsrael

Personalised recommendations