Exploiting Positive and Negative Graded Relevance Assessments for Content Recommendation

  • Maarten Clements
  • Arjen P. de Vries
  • Marcel J. T. Reinders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5427)

Abstract

Social media allow users to give their opinion about the available content by assigning a rating. Collaborative filtering approaches to predict recommendations based on these graded relevance assessments are hampered by the sparseness of the data. This sparseness problem can be overcome with graph-based models, but current methods are not able to deal with negative relevance assessments.

We propose a new graph-based model that exploits both positive and negative preference data. Hereto, we combine in a single content ranking the results from two graphs, one based on positive and the other based on negative preference information. The resulting ranking contains less false positives than a ranking based on positive information alone. Low ratings however appear to have a predictive value for relevant content. Discounting the negative information therefore does not only remove the irrelevant content from the top of the ranking, but also reduces the recall of relevant documents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 43–52. Morgan Kaufmann, San Francisco (1998)Google Scholar
  2. 2.
    Herlocker, J.L., Konstan, J.A.: Content-independent task-focused recommendation. IEEE Internet Computing 5(6), 40–47 (2001)CrossRefGoogle Scholar
  3. 3.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW 2001: Proceedings of the 10th international conference on World Wide Web, pp. 285–295. ACM Press, New York (2001)Google Scholar
  4. 4.
    Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In: SIGIR 2006: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 501–508. ACM Press, New York (2006)Google Scholar
  5. 5.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems–a case study. In: ACM WebKDD Workshop (2000)Google Scholar
  6. 6.
    Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst. 22(1), 116–142 (2004)CrossRefGoogle Scholar
  7. 7.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  8. 8.
    Kleinberg, J.M.K.: Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM) 46(5), 604–632 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Yates, R.D., Goodman, D.J.: Probability and Stochastic Processes. John Wiley & Sons, Inc., New York (1999)MATHGoogle Scholar
  10. 10.
    Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: Advances in Neural Information Processing Systems (NIPS), vol. 14, pp. 945–952. MIT Press, Cambridge (2001)Google Scholar
  11. 11.
    Clements, M., de Vries, A.P., Reinders, M.J.T.: Optimizing single term queries using a personalized markov random walk over the social graph. In: Workshop on Exploiting Semantic Annotations in Information Retrieval, ESAIR (March 2008)Google Scholar
  12. 12.
    Craswell, N., Szummer, M.: Random walks on the click graph. In: SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 239–246. ACM Press, New York (2007)Google Scholar
  13. 13.
    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46(5), 323–351 (2005)CrossRefGoogle Scholar
  14. 14.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  15. 15.
    Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank. In: VLDB 2004: Proceedings of the Thirtieth international conference on Very large data bases, VLDB Endowment, pp. 576–587 (2004)Google Scholar
  16. 16.
    Gori, M., Pucci, A.: Research paper recommender systems: A random-walk based approach. In: WI 2006: Proceedings of the, IEEE/WIC/ACM International Conference on Web Intelligence, pp. 778–781. IEEE Computer Society, Washington (2006)Google Scholar
  17. 17.
    Mirza, B.J., Keller, B.J., Ramakrishnan, N.: Studying recommendation algorithms by graph analysis. Journal of Intelligent Information Systems 20(2), 131–160 (2003)CrossRefGoogle Scholar
  18. 18.
    Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. Knowledge and Data Engineering, IEEE Transactions on 19(3), 355–369 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maarten Clements
    • 1
  • Arjen P. de Vries
    • 1
    • 2
  • Marcel J. T. Reinders
    • 1
  1. 1.Delft University of TechnologyThe Netherlands
  2. 2.National Research Institute for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands

Personalised recommendations