Skip to main content

Bioidentification of Xenobiotics in Water as a Part of Pollution Control

  • Chapter
  • First Online:
  • 103 Accesses

Part of the book series: Environmental Earth Sciences ((EESCI))

Abstract

We have been developing non-traditional methods of the identification of pollutants, using various hydrobionts as biological objects and the study of the mechanism of toxic action of xenobiotics. The experiments were carried out with using of Daphnia magna. D. magna is a Crustacean in the order of Cladocera. This aquatic animal extensively used as a test organism in aquatic toxicology due to their small size, short life cycle and amenability to lab culture. D. magna is the most sensitive test-object in relation of different pollutants among all known biological objects including experimental animals. Experiments were performed with a 2-days old culture of D. magna. The toxicity of xenobiotics was determined by the value of LC50, a concentration of the compounds causing death to 50% of hydrobionts during incubation with toxicants for 24 hours. In the first stage of the work, toxicity of organophosphates (Dipterex, DFP, DDVP, Paraoxon, Malathion, Malaoxon), carbamates (Aminostigmine, Physostigmine, Sevine), heavy metals (Hg, Pb, Cu, Co, Cd, Cr, As, Al), organochlorines (Aldrin, Dieldrin, Endrin, Aroclor, DDT, Lindane, PCBs etc.) and pyrethroids (Cypermethrin, Fenvalerate, Deltamethrin, Permethrin, Allethrin, Resmethrin, Phenothrin, Kadethrin, Cyphenothrin) was determined. The effects of a number of antagonists on the toxicity of xenobiotics were studied. At the first time we discovered that in experiments to D. magna some muscarinic cholinoreceptor blockers (atropine, glipine, pediphen etc.) reduced the toxic effect of organophosphates and carbamates. In the case of heavy metals the chelating agents (EDTA, Dithioethylcarbamate, Unithiolum, Sodium thiosulphuricum, l-Aspartic acid) were effective, for certain organochlorine poisonings – anticonvulsive drugs (diazepam, phenobarbital). In the case of pyrethroid’s poisonings the antagonist of glutamate receptor (ketamine), DOPA receptors (haloperidole) and blocker of calcium channel (nimodipine) reduced the toxicity of xenobiotics. As far as these antidotes have a specific treatment action only against definite classes of pollutants, we have elaborated the sensitive express-methods of bioidentification of pollutants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Flerov B (1989) Ecological and physiological aspects of toxicology of aquatic animals. Nauka, Leningrad, Russia, 205p

    Google Scholar 

  2. Peters R, De Bernardi R (1987) Daphnia. Verbania, Pallanza, Italy, 399p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii Tonkopii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tonkopii, V. (2010). Bioidentification of Xenobiotics in Water as a Part of Pollution Control. In: Gökçekus, H., Türker, U., LaMoreaux, J. (eds) Survival and Sustainability. Environmental Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95991-5_91

Download citation

Publish with us

Policies and ethics