Application of Non-crystalline Diffraction with Microfocus to Carbon Fibres

  • D. Cazorla-AmorósEmail author
  • D. Lozano-Castelló
  • M. Müller
Part of the Lecture Notes in Physics book series (LNP, volume 776)


An overview of the type of information obtained by X-ray microdiffraction and micro small-angle X-ray scattering (\(\mu\)SAXS) measurements on carbon fibres and activated carbon fibres is presented. It is shown that the use of X-ray microbeams is a unique way to know about the internal organisation of both pores and nanocrystallites in single carbon fibres. Moreover, combination of these techniques with stretching experiments allowed us to learn how the application of a mechanical load affects carbon fibres from the length scales of atomic structure to the microporosity. In addition, it is seen that accessible and non-accessible porosity can be distinguished by contrast-matching \(\mu\)SAXS experiments and that the development of isotropic and anisotropic microporosity across the fibre diameter during the activation process can be studied by \(\mu\)SAXS technique.


Beam Position External Ring Porosity Development SAXS Pattern Original Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Economics of Carbon Fibre, 2nd ed. Roskill Information Services Ltd., 2 Clapham Road, London SW9 OJA (1990).Google Scholar
  2. 2.
    Madronero, A. J. Mater. Sci. 30, 2061, (1995).CrossRefADSGoogle Scholar
  3. 3.
    Alcaniz-Monge J.,Cazorla-Amorós D., Linares-Solano A. Fibras de Carbón: Preparación y aplicaciones. Publicaciones Universidad de Alicante. Alicante (1998).Google Scholar
  4. 4.
    Donnet J.B., Bansal R.C. Carbon Fibers, International Fiber Science and Technology, Vol. 10. Marcel Dekker, New York (1990).Google Scholar
  5. 5.
    Riekel C. Rep. Prog. Phys. 63, 233, (2000).Google Scholar
  6. 6.
    Loidl D., Peterlik H., Paris O., Müller M., Burghammer M., Riekel C. J. Synchrotron Rad. 12, 758, (2005).CrossRefGoogle Scholar
  7. 7.
    Paris O., Loidl D., Müller M., Lichtenegger H., Peterlik H. J. Appl. Cryst. 34, 473, (2001).CrossRefGoogle Scholar
  8. 8.
    Paris O., Loidl D., Peterlik H., Müller M., Lichtenegger H., Fratzl P. J. Appl. Cryst. 33, 695, (2000).CrossRefGoogle Scholar
  9. 9.
    Loidl D., Peterlik H., Müller M., Riekel C., Paris O. Carbon 41, 563, (2003).CrossRefGoogle Scholar
  10. 10.
    Blakslee O.L., Proctor D.G., Seldin E.J., Spence G.B., Weng T. J. Appl. Phys. 41, 3373, (1970).CrossRefGoogle Scholar
  11. 11.
    Ahmadpour A., Do D.D. Carbon 34, 471 (1996).CrossRefGoogle Scholar
  12. 12.
    Lozano-Castello D., Lillo-Rodenas M.A., Cazorla-Amorós D., Linares-Solano A., Carbon 39, 741 (2001).CrossRefGoogle Scholar
  13. 13.
    Lillo-Rodenas M.A., Lozano-Castelló D., Cazorla-Amorós D., Linares-Solano A., Carbon 39, 751 (2001).CrossRefGoogle Scholar
  14. 14.
    Suarez-Garcia F., Martinez-Alonso A., Tascon J.M.D. Carbon 39, 1111 (2001).CrossRefGoogle Scholar
  15. 15.
    Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Pure App. Chem. 57, 603 (1985).CrossRefGoogle Scholar
  16. 16.
    Linares-Solano A., Salinas-Martinez de Lecea C., Alcaniz-Monge J., Cazorla-Amorós D. Tanso 185, 316 (1998).Google Scholar
  17. 17.
    D., Raymundo-Pinero E., Cazorla-Amorós D., Linares-Solano A., Müller M., Riekel C. Carbon 40, 2727 (2002).CrossRefGoogle Scholar
  18. 18.
    Lozano-Castelló D., Raymundo-Pinero E., Cazorla-Amorós D., Linares-Solano A., Müller M., Riekel C. Stud. Surf. Sci. Catál. 144, 51 (2002).CrossRefGoogle Scholar
  19. 19.
    Higgins J.S., Benoit H.C. Polymers and Neutron Scattering. Oxford University Press, New York (1994).Google Scholar
  20. 20.
    Müller M., Czihak C., Vogl G., Fratzl P., Schober H., Riekel C. Macromolecules 31, 3953 (1998).CrossRefADSGoogle Scholar
  21. 21.
    Ruland, W. X-ray determination of crystallinity and diffuse disorder scattering; Acta Cryst. 14, 1180 (1961).CrossRefGoogle Scholar
  22. 22.
    Lozano-Castelló D., Maciá-Agulló J.A., Cazorla-Amorós D., Linares-Solano A., Müller M., Burghammer M., Riekel C. Carbon 44, 1121 (2006).CrossRefGoogle Scholar
  23. 23.
    Reynolds W.N. Structure and physical properties of carbon fibers. In: P.L. Walker Jr. and P.A. Thrower (Eds) Chemistry and Physics of Carbon, vol 11, pp. 1–67, Dekker, New York (1973).Google Scholar
  24. 24.
    Gupta A., Harrison I.R., Lahijani J. J. Appl. Cryst., 27, 627 (1994).CrossRefGoogle Scholar
  25. 25.
    Guinier A., Fournet G., Walker C.B. Small Angle Scattering of X-Rays, pp. 5–78. Wiley, New York (1955).Google Scholar
  26. 26.
    Müller M., Riekel C., Vuong R., Chanzy H. Polymer 41, 2627 (2000).CrossRefGoogle Scholar
  27. 27.
    Raymundo-Pinero E., Azaïs P., Cacciaguerra T., Cazorla-Amorós D., Linares-Solano A., Béguin F. Carbon 43, 786 (2005).CrossRefGoogle Scholar
  28. 28.
    Alexander L.E. X-ray Diffraction Methods in Polymer Science, reprint edition. Huntington, New York (1979).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Cazorla-Amorós
    • 1
    Email author
  • D. Lozano-Castelló
    • 1
  • M. Müller
    • 2
  1. 1.Departamento de Química InorgánicaUniversidad de AlicanteSpain
  2. 2.Universität KielGermany

Personalised recommendations