Structural Analysis of Biological and Technical Nanocomposites by X-Ray Scattering

  • P. NawanitEmail author
  • H. Zhou
  • B. Chu
  • C. Burger
  • B.S. Hsiao
Part of the Lecture Notes in Physics book series (LNP, volume 776)


Nanocomposites are an interesting class of materials where the mechanical properties and other characteristics of a polymeric matrix are modified, usually strongly enhanced, by inclusion of a nanoscopically dispersed crystalline inorganic filler. Crucial parameters are not only the volume fraction of the filler but also and especially the total interface area of the heterogeneous composite system. Nanocomposites are of great significance both for naturally occurring and for artificially synthesized materials. The heterogeneous nature of the nanocomposites ensures a good density contrast at the relevant length scales so that X-ray scattering techniques can provide useful qualitative and quantitative information about the nanocomposite structure and its preferred orientation. In this chapter, the structural analysis of two-dimensional small-angle X-ray scattering (SAXS) patterns is discussed for polymer–inorganic nanocomposites filled with platelet-shaped mineral crystals showing preferred orientation. Two examples are analyzed in detail: (1) Synthetic nanocomposites of polymers filled with organically modified clay and (2) the biological nanocomposite bone consisting of a fibrous collagen matrix with embedded nano-sized apatite platelets. In both cases, the application of adequate analysis techniques leads to significant quantitative and qualitative structural information that goes well beyond what would be achieved using less refined methods.


Prefer Orientation Thickness Distribution Collagen Molecule Mineral Crystal Relevant Length Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giannelis E.P. JOM 44(3), 28–30 (1992).Google Scholar
  2. 2.
    Giannelis E.P. Adv. Mater. 8(1), 29–35 (1996).CrossRefGoogle Scholar
  3. 3.
    Gleiter H. Adv. Mater. 4(7–8), 474–481 (1992).CrossRefGoogle Scholar
  4. 4.
    Novak B.M. Adv. Mater. 5(6), 422–433 (1993).CrossRefGoogle Scholar
  5. 5.
    Gelfer M., Burger C., Fadeev A., Sics I., Chu B., Hsiao B.S., Heintz A., Kojo K., Hsu S.L., Si M., Rafailovich M. Langmuir 20(9), 3746–3758 (2004).CrossRefGoogle Scholar
  6. 6.
    Schadler L. Nat. Mater. 6(4), 257–258 (2007).CrossRefADSGoogle Scholar
  7. 7.
    Biswas M., Ray S.S. In New Polymerization Techniques and Synthetic Methodologies, 155, 167–221 (2001).CrossRefGoogle Scholar
  8. 8.
    Giannelis E.P., Krishnamoorti R., Manias E. Adv. Pol. Sci. 138, 108–147 (1999).Google Scholar
  9. 9.
    Vaia R.A., Price G., Ruth P.N., Nguyen H.T., Lichtenhan J. Appl. Clay Sci. 15(1–2), 67–92 (1999).CrossRefGoogle Scholar
  10. 10.
    Vaia R.A., Ishii H., Giannelis E.P. Chem. Mater. 5(12), 1694–1696 (1993).CrossRefGoogle Scholar
  11. 11.
    Bharadwaj R.K. Macromolecules 34(26), 9189–9192 (2001).CrossRefADSGoogle Scholar
  12. 12.
    Xu R., Manias E., Snyder A.J., Runt J. Macromolecules 34(2), 337–339 (2001).CrossRefADSGoogle Scholar
  13. 13.
    Yano K., Usuki A., Okada A., Kurauchi T., Kamigaito O. J. Pol. Sci. Part A Pol. Chem. 31(10), 2493–2498 (1993).CrossRefGoogle Scholar
  14. 14.
    Gilman J.W. Appl. Clay Sci. 15(1–2), 31–49 (1999).CrossRefGoogle Scholar
  15. 15.
    Gilman J.W., Jackson C.L., Morgan A.B., Harris Jr.R., Manias E., Giannelis E.P., Wuthenow M., Hilton D., Phillips S.H. Chem. Mater. 12(7), 1866–1873 (2000).CrossRefGoogle Scholar
  16. 16.
    Nawani P., Desai P., Lundwall M., Gelfer M.Y., Hsiao B.S., Rafailovich M., Frenkel A., Tsou A.H., Gilman J.W., Khalid S. Polymer 48(3), 827–840 (2007).CrossRefGoogle Scholar
  17. 17.
    Liu L., Qi Z., Zhu X. J. Appl. Pol. Sci. 71(7): 1133–1138 (1999).CrossRefGoogle Scholar
  18. 18.
    Fukushima Y., Okada A., Kawasumi M., Kurauchi T., Kamigaito O. Clay Minerals 23(1), 27–34 (1988).CrossRefGoogle Scholar
  19. 19.
    Hajji P., David L., Gerard J.F., Pascault J.P., Vigier G. J. Pol. Sci. Part B Pol. Phys. 37(22), 3172–3187 (1999).CrossRefADSGoogle Scholar
  20. 20.
    Liu J., Boo W.J., Clearfield A., Sue H. J. Mater. Manuf. Processes 21(2), 143–151 (2006).CrossRefGoogle Scholar
  21. 21.
    Weiner S., Traub W. FASEB J. 6(3), 879–885 (1992).Google Scholar
  22. 22.
    Weiner S., Wagner H.D. Ann. Rev. Mater. Sci. 28(1), 271–298 (1998).CrossRefADSGoogle Scholar
  23. 23.
    Glimcher M.J., (Ed.), Metabolic Bone Disease and Clinically Related Disorders, San Diego, Academic Press (1998).Google Scholar
  24. 24.
    Zhou H., Burger C., Sics I., Hsiao B.S., Chu B., Graham L.,Glimcher M.J. J. Appl. Crystallogr. 40(s1), s666–s668 (2007).CrossRefGoogle Scholar
  25. 25.
    Currey J.D. In Bones:Structure and Mechanics. Princeton University Press, Princeton (2006).Google Scholar
  26. 26.
    Hodge A.J., Petruska J.A. Aspects in Protein Structure, 289–300, New York, Academic Press (1963).Google Scholar
  27. 27.
    Lee D.D., Glimcher M.J. J. Mol. Biol. 217(3), 487–501 (1991).CrossRefGoogle Scholar
  28. 28.
    Landis W.J., Song M.J., Leith A., McEwen L., McEwen B.F. J. Struct. Biol. 110(1), 39–54 (1993).CrossRefGoogle Scholar
  29. 29.
    Zernike F., Prins J.A. Zeitschrift für Physik 41(6–7), 184–194 (1927).CrossRefADSGoogle Scholar
  30. 30.
    Hermans J.J. Rec. Trav. Chim. Pays-Bas 63, 211–218(1944).CrossRefGoogle Scholar
  31. 31.
    Ruland W., Tompa H. Acta Crystallogr. A 24(1), 93–99 (1968).CrossRefADSGoogle Scholar
  32. 32.
    Ruland W. Colloid and Polymer Science Kolloid-Zeitschrift & Zeitschrift für Polymere 255(9), 833–836 (1977).CrossRefGoogle Scholar
  33. 33.
    Ruland W. Acta Crystallogr. A 22(5), 615–623 (1967).CrossRefGoogle Scholar
  34. 34.
    Onsager L. Ann. N. Y. Acad. Sci. 51, 627–659(1949).CrossRefADSGoogle Scholar
  35. 35.
    Burger C., Zhou H.-W., Sics I., Hsiao B.S., Chu B., Graham L., Glimcher M.J. J. Appl. Cryst. 41, 252–261 (2008).CrossRefGoogle Scholar
  36. 36.
    Hermans J.J. Rec. Trav. Chim. Pays-Bas-J. Roy. Neth. Chem. Soc 657(8), 427–447(1946).Google Scholar
  37. 37.
    Glimcher M.J. Rev. Modern Phys. 31(2), 359–393 (1959).CrossRefADSGoogle Scholar
  38. 38.
    Katz E.P., Li S.T. J. Mol. Biol. 80(1), 1–15 (1973).CrossRefGoogle Scholar
  39. 39.
    Hodge A.J. Connect. Tissue Res. 21(1–4), 467–477 (1989).ADSGoogle Scholar
  40. 40.
    Smith J.W. Nature 219(5150), 157–158 (1968).CrossRefADSGoogle Scholar
  41. 41.
    Burger C., Zhou H.-W., Wang H., Sics I., Hsiao B.S., Chu B., Graham L., Glimcher M.J. Biophys. J. 95(4),1985–1992 (2008).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. Nawanit
    • 1
    Email author
  • H. Zhou
    • 1
  • B. Chu
    • 1
  • C. Burger
    • 1
  • B.S. Hsiao
    • 1
  1. 1.Chemistry DepartmentStony Brook UniversityStony Brook

Personalised recommendations