The Use of Scattering and Spectroscopic Synchrotron Radiation Methods in Materials Science

Part of the Lecture Notes in Physics book series (LNP, volume 776)


Materials science is a very broad research field in which a variety of X-ray-based characterisation techniques play an important role in determining the structure of the materials under investigation. However, these techniques can also be used in many ways to determine the dynamic material properties and the influence that a variety of parameters can have on the final material properties during the manufacturing process. In many instances the high intensity and collimation of synchrotron radiation sources are beneficial, and often required, to obtain the desired information. This can be for instance the case in time-resolved X-ray scattering experiments but also in many imaging techniques where a low divergence but large beam size and tunable photon energy can render much better results compared to conventional X-ray sources. For X-ray spectroscopic techniques the tunability of the photon energy practically confines them at present to accelerator-based central laboratories. In this chapter an overview of some new developments and existing possibilities will be discussed. The main emphasis will be on X-ray scattering techniques on materials that evolve from an amorphous towards a more ordered state.


Beam Line Colloidal Crystal Technique Combination WAXS Pattern SAXS Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bras W., Ryan A. J. Adv. Colloid Interface Sci. 75, 1 (1998).Google Scholar
  2. 2.
    Bark M., Zachmann H.G., Alamo R., et al. Makromol. Chem. Macromol. Chem. Phys. 193, 2363 (1992).Google Scholar
  3. 3.
    Bras W., Derbyshire G.E., Ryan A. J., et al. Nucl. Instrum. Methods Phys. Res. A-Accelerators Spectrometers Detectors and Associated Equipment 326, 587 (1993).Google Scholar
  4. 4.
    de Jager M.W., Gooris G.S., Dolbnya I.P., et al. Chem. Phys. Lipids 124, 123 (2003).CrossRefGoogle Scholar
  5. 5.
    Goderis B., Peeters M., Mathot V.B.F., et al. J. Polym. Sci. B Polym. Phys. 38, 1975 (2000).CrossRefADSGoogle Scholar
  6. 6.
    Polushkin E., van Ekenstein G.A., Dolbnya I., et al. Macromolecules 36, 1421 (2003).CrossRefADSGoogle Scholar
  7. 7.
    Greaves G.N., Sen S. Adv. Phys. 56, 1 (2007).Google Scholar
  8. 8.
    Smolsky I.L., Liu P., Niebuhr M., et al. J. Appl. Crystallogr. 40, S453 (2007).CrossRefGoogle Scholar
  9. 9.
    Bras W. J. Macromol. Sci. Phys. B37, 557 (1998).CrossRefGoogle Scholar
  10. 10.
    Narayanan T. , Diat O., Bosecke P., Nucl. Instrum. Methods Phys. Res. A-Accelerators Spectrometers Detectors And Associated Equipment 467, 1005 (2001).Google Scholar
  11. 11.
    Bras W., Derbyshire G.E., Devine A., et al. J. Appl. Crystallogr. 28, 26 (1995).CrossRefGoogle Scholar
  12. 12.
    Russell T.P., Koberstein J. T. J. Polym. Sci. B Polym. Phys. 23, 1109 (1985).CrossRefGoogle Scholar
  13. 13.
    Bryant G.K. , Gleeson H.F., Ryan A.J., et al. Rev. Sci. Instrum. 69, 2114 (1998).CrossRefADSGoogle Scholar
  14. 14.
    Bras W., Derbyshire G.E., Bogg D., et al. Science 267, 996 (1995).CrossRefADSGoogle Scholar
  15. 15.
    Jimenez-Ruiz M., Sanz A., Nogales A., et al. Rev. Sci. Instrum. 76 (2005).Google Scholar
  16. 16.
    Wurm A., Soliman R., Goossens J.G.P., et al. J. Non-Cryst. Solids 351, 2773 (2005).CrossRefADSGoogle Scholar
  17. 17.
    Broennimann C., Eikenberry E.F., Henrich B., et al. J. Synchrotron Radiat. 13, 120 (2006).CrossRefGoogle Scholar
  18. 18.
    Panine P., Finet S., Weiss T.M., et al. Adv. Colloid Interface Sci. 127, 9 (2006).CrossRefGoogle Scholar
  19. 19.
    Brown W., Mortensen K. Scattering in Polymeric and Colloidal Systems. Gordon and Breach (2000).Google Scholar
  20. 20.
    Bras W., Diakun G.P, Diaz J.F., et al. Biophys. J. 74, 1509 (1998).CrossRefADSGoogle Scholar
  21. 21.
    Keymeulen H.R., Diaz A., Solak H.H., et al. J. Appl. Phys. 102 (2007).Google Scholar
  22. 22.
    Mesu J.G., van der Eerden A.M.J., de Groot F.M.F., et al. J. Phys. Chem. B 109, 4042 (2005).CrossRefGoogle Scholar
  23. 23.
    Gommes C.J., Goderis B., Pirard J. P. J. Phys. Chem. C 111, 11150 (2007).CrossRefGoogle Scholar
  24. 24.
    Jensen H., Bremholm M., Nielsen R.P., et al. Angew. Chem. Int. Ed. 46, 1113 (2007).CrossRefGoogle Scholar
  25. 25.
    Pontoni D., Bolze J., Dingenouts N., et al. J. Phys. Chem. B 107, 5123 (2003).CrossRefGoogle Scholar
  26. 26.
    DiMasi E., Kwak S.Y., Amos F.F., et al. Phys. Rev. Lett. 97 (2006).Google Scholar
  27. 27.
    Bras W., Dolbnya I.P., Detollenaere D., et al. J. Appl. Crystallogr. 36, 791 (2003).CrossRefGoogle Scholar
  28. 28.
    Heeley E.L., Maidens A.V., Olmsted P.D., et al. Macromolecules 36, 3656 (2003).CrossRefADSGoogle Scholar
  29. 29.
    Michel F.M., Ehm L., Antao S.M., et al. Science 316, 1726 (2007).CrossRefADSGoogle Scholar
  30. 30.
    Chupas P.J., Chapman K.W, Jennings G., et al. J. Am. Chem. Soc. 129, 13822 (2007).CrossRefGoogle Scholar
  31. 31.
    Mesu J.G., Beale A.M. , de Groot F.MF., et al. J. Phys. Chem. B 110, 17671 (2006).Google Scholar
  32. 32.
    Als-Nielsen J., McMorrow D. Elements of Modern X-Ray Physics. Wiley (2001).Google Scholar
  33. 33.
    Petukhov A.V., Aarts D., Dolbnya I.P., et al. Phys. Rev. Lett. 88 (2002).Google Scholar
  34. 34.
    Dolbnya I.P., Petukhov A.V., Aarts D., et al. Europhys. Lett. 72, 962 (2005).CrossRefADSGoogle Scholar
  35. 35.
    Harada T., Matsuoka H. , Curr. Opin. Colloid Interface Sci. 8, 501 (2004).CrossRefGoogle Scholar
  36. 36.
    Willey T.M. , van Buuren T., Lee J.R.I. , et al. Propellants Explos. Pyrot. 31, 466 (2006).Google Scholar
  37. 37.
    Lengeler B., Schroer C.G. , Richwin M., et al. Appl. Phys. Lett. 74, 3924 (1999).CrossRefADSGoogle Scholar
  38. 38.
    Thijssen J.H.J., Petukhov A.V., Hart D.C.T., et al. Adv. Mater. 18, 1662 (2006).CrossRefGoogle Scholar
  39. 39.
    Petukhov A.V., van der Beek D., Dullens R.P.A., et al. Phys. Rev. Lett. 95 (2005).Google Scholar
  40. 40.
    Frings P., Vanacken J., Detlefs C., et al. Rev. Sci. Instrum. 77 (2006).Google Scholar
  41. 41.
    Irving T.C., Maughan D.W. Biophys. J. 78, 2511 (2000).Google Scholar
  42. 42.
    Howse J.R., Topham P., Crook C.J., et al. Nano Lett. 6, 73 (2006).CrossRefADSGoogle Scholar
  43. 43.
    Rabai G., Orban M., Epstein I.R., Acc. Chem. Res. 23, 258 (1990).CrossRefGoogle Scholar
  44. 44.
    Muthukumar M. In Interphases and Mesophases in Polymer Crystallization III, Vol. 191, p. 241 (2005).CrossRefGoogle Scholar
  45. 45.
    Ezquerra T.A., Sics I., Nogales A., et al. Europhys. Lett. 59, 417 (2002).CrossRefADSGoogle Scholar
  46. 46.
    Beale A.M., van der Eerden A.M.J., Jacques S.D.M. , et al. J. Am. Chem. Soc. 128, 12386 (2006).CrossRefGoogle Scholar
  47. 47.
    Avrami M. J. Chem. Phys. 7, 1103 (1939).ADSGoogle Scholar
  48. 48.
    Bras W., Greaves G.N., Oversluizen M., et al. J. Non-Cryst. Solids 351, 2178 (2005).CrossRefADSGoogle Scholar
  49. 49.
    Cumming A., Wiltzius P., Bates F.S., et al. Phys. Rev. A 45, 885 (1992).CrossRefADSGoogle Scholar
  50. 50.
    Dent A.J., Oversluizen M., Greaves G.N., et al. Physica B 209, 253 (1995).ADSGoogle Scholar
  51. 51.
    Megens M. , vanKats C.M., Bosecke P., et al. Langmuir 13, 6120 (1997).CrossRefGoogle Scholar
  52. 52.
    Vos W.L., Megens M., vanKats C.M., et al. Langmuir 13, 6004 (1997).CrossRefGoogle Scholar
  53. 53.
    Durville F., Champagnon B., Duval E., et al. Phys. Chem. Glasses 25, 126 (1984).Google Scholar
  54. 54.
    Goodisman J., Brumberger H. J. Appl. Crystallogr. 4, 347 (1971).CrossRefGoogle Scholar
  55. 55.
    Azin N.J., Camerucci M.A., Cavalieri A.L., Ceram. Int. 31, 189 (2005).CrossRefGoogle Scholar
  56. 56.
    Donald I. W. J. Mater. Sci. 30, 904 (1995).CrossRefADSGoogle Scholar
  57. 57.
    Bamford H., Tipper C. In Comprehensive Chemical Kinetics, Vol. 22 Chap. 3. H. Bamford and C. Tipper (Eds.), Elsevier, N.Y. (1980).Google Scholar
  58. 58.
    Wagner R., Kampmann R. In Materials Science and Technology, (Vol. 5). P. Haasen and E. J. Krames R.W. Cahn (Eds.), VCH (1991).Google Scholar
  59. 59.
    Rao P. , Doremus R. J. Non-Cryst. Solids 203, 202 (1996).Google Scholar
  60. 60.
    Diaz-Mora N., Zanotto E.D., Hergt R., et al. J. Non-Cryst. Solids 273, 81 (2000).CrossRefADSGoogle Scholar
  61. 61.
    Birch F. Phys. Rev. A 71, 809 (1947).CrossRefADSGoogle Scholar
  62. 62.
    Suzuki I. , Ohno I., Anderson O. L. Am. Mineral. 85, 304 (2000).Google Scholar
  63. 63.
    Martignago F., Negro A.D., Carbonin S. Phys. Chem. Mineral. 30, 401 (2003).CrossRefADSGoogle Scholar
  64. 64.
    Gilbert B., Huang F., Zhang H.Z., et al. Science 305, 651 (2004).CrossRefADSGoogle Scholar
  65. 65.
    Dubiel M., Schneider R., Hofmeister H., et al. Eur. Phys. J. D 43, 291 (2007).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Netherlands Organization for Scientific Research (NWO) DUBBLE CRG@ESRFBP 220 F38043 GrenobleFrance

Personalised recommendations